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HP to Transform Server Market with Single Platform for
Mission-critical Computing

Expanded HP Converged Infrastructure delivers industry-leading choice, investment
protection

PALO ALTO, Calif. -- HP today announced "Odyssey,” a project to redefine the future of mission-
critical computing with a development roadmap that will unify UNIX® and x86 server
architectures to bring industry-leading availability, increased performance and
uncompromising client choice to a single platform.

Organizations are challenged with increasingly stringent service-level agreements for their
most demanding workloads, alongwith the pressure to be mare efficient with their IT budgets
and resources. They need the availability and resilience of UNIX-based platforms along with the
familiarity and cost-efficiency of industry-standard platforms.

'
Using advanced technology across a common, modular HP BladeSystem arcrlitecture, HP is
developing platforms to enable clients to choose the best environment aligned to their
organizations’ needs without compromise, helping ensure investment protection for the long
term.

HP’s new development roadmap includes ongoing innovations to HP Integrity servers, HP
NonStop systems and the HP-UX and OpenVMS operating systems. The roadmap also includes
delivering blades with Intel® Xeon® processors for the HP Superdome 2 enclosure (code name
“DragonHawk") and the scalable c-Class blade enclosures (code named "Hydralynx”), while
fortifying Windows® and Linux environments with innovations from HP-UX within the next two
years.

With the availability of “DragonHawk,” clients will be able to run mission-critical workloads on
HP-UX on Intel Itanium®-based blades while simultaneously running workloads on Microsoft
Windows or Red Hat Enterprise Linux on Intel Xeon-based blades in the same Superdome 2
enclosure.

"Clients have been asking us to expand the mission-critical experience that is delivered today
with HP-UX on Integrity to an x86-based infrastructure,” said Martin Fink, senior vice president
and general manager, Business Critical Systems, HP. “HP plans to transform the server
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Oracle Announces Breakthrough Processor and
Systems Design with SPARC M7

Dramatic Advancements in Memory Protection, Encryption
Acceleration, and In-memory Database Processing Deliver End-to-End
Security and Efficiency for Oracle Engineered Systems and Servers

ORACLE OPENWORLD, SAN FRANCISCO —Oct 26, 2015

Oracle today introduced an all-new family of SPARC systems built on the revolutionary 32-core, 256-thread
SPARC M7 microprocessor. The systems feature Security in Silicon for advanced intrusion protection and
encryption; SQL in Silicon that delivers unparalleled database efficiency; and world record performance
spanning enterprise, big data, and cloud applications.

The new SPARC M7 processor-based systems, including the Oracle SuperCluster M7 engineered system and
SPARC T7 and M7 servers, are designed to seamlessly integrate with existing infrastructure and include fully
intearated virtualization and manaacement for cloud Al exictina commercial and custom annlications will run on



The rise of big NUMA machines

2o o Print A
Topics: Converged Infrastructure, Instant-On Enterprise Find HP News

HP to Transform Server Market with Single Platform for
Mission-critical Computing Related media contacts

Expanded HP Converged Infrastructure delivers industry-leading choice, investment Torti Molini. HP
protection terri. molini@hp.com

T e T ST

paLo ALTO, calit PFess Release

critical computir
architectures to

emreninc | Qracle Announces Breakthrough Processor and
naemnan | SYStems Design with SPARC M7

and resources. 1
familiarity and c

snes Dramatic Adv— Magigngd for large-scale, in-memory

developingplatl  m ~~a|@aration
7

organizations’ ni

=n  securityand | gpplications in the cloud

HP's new develc

fertonsvsten ORACLE OPENWOI X1 Instances are a new addition to the Amazon EC2 memory-

delivering blade
“DragonHawk")

fortitying Windo optimized instance family and are designed for running large-scale, in-
years,

With the availab memory applications and in-memory databases in the AWS cloud. X1
HP-UX onIntel i

oo racle today introdu INNStaNces offer 1,952 GiB of DDR4 based memory, 8x the memory

“Cllientshavebe SPARC M7 micropro Offel'ed by any Other Amazon ECQ InStance EaCh X-I InStance IS
W|Lh HP—UXlon " encryption; SQL in S
e spanning enterprise,  POWered by four Intel® Xeon® E7 8880 v3 (Haswell) processors and

offers 128 vCPUs.
The new SPARC M7

SPARC T7 and M7 s

e e Compared to other EC2 instances, X1 instances have the lowest price



Importance of NUMA awareness

NUMA node 1 NUMA node 2
W6 | W5 W3
N g
W1 W4

-

N

[ —

W2

NUMA oblivious

w1]w2]wa]walwelws

~

File




Importance of NUMA awareness

NUMA node 2

NUMA node 1

W6 |=

\

W1

-

N

[ —

W5

W4

S

c

W2

NUMA oblivious

w1]w2]wa]walwelws

NUMA aware/hierarchical

w1]welw2]wawa]ws

~

File




Importance of NUMA awareness

NUMA node 1 NUMA node 2 NUMA oblivious

w1]w2]wa]walwelws

W6 |« W5 W3
W1 W4
ﬁ | ‘\ NUMA aware/hierarchical

w2 w1]welw2]wawa]ws




L ock's research efforts and their use

Lock's research efforts

Dekker's algorithm (1962)
Semaphore (1965)

E"Lamport's bakery algorithm (1 974):5

Backoff lock (1989)
Ticket lock (1991)
MCS lock (1991)
HBO lock (2003)

. Hierarchical lock - HCLH (2006)
Flat combining NUMA lock (2011) |

Remote Core locking (2012)
Cohort lock (2012)

RW cohort lock (2013)
Malthusian lock (2014)
HMCS lock (2015)
AHMCS lock(2016)
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Linux kernel lock
adoption / modification
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L ock's research efforts and their use

_Lock's research efforts Linux kernel lock
Dekker's algorithm (1962) adoption / modification

,‘ Semaphore (1965) S —

Lamport's bakery algorlthm (1974) Q gzlr:foctl:o?eTTATSTAS bk 1990s

Adopting NUMA aware locks is not easy

Remote Core locking (2012) ¢ "YYW Mutex — TTAS + spin + block
Cohort lock (2012) aware Rwsem — TTAS + spin + block
RW cohortlock 2013)  + 10CkS @) “spiniock - gspinlock 2016
Malthusian lock (2014) | | Mutex — TTAS + spin + block ’
HMCS lock (2015) | . Rwsem — TTAS + spin + block

AHMCS lock(2016) / V




Issues with NUMA-aware primitives

* Memory footprint overhead

- Cohort lock single instance: 1600 bytes

- Example: 1-4 GB of lock space vs 38 MB of Linux’s
lock for 10 M inodes

* Does not support blocking/parking behavior



Blocking/parking approach

* Under subscription
- #threads <= #cores Gnder-sum@
* Over subscription [N

- #threads > #cores /
1) Spin for a certain duration

* Spin-then-park strategy

Lock throughput =

2) Add to a parking list #ithread -
3) Schedule out (park/block)
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Blocking/parking approach

* Under subscription

- #threads <= #cores [ under-sub

s@@ Q@ubscnptlon:l
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* Over subscription

- #threads > #cores

* Spin-then-park strategy
1) Spin for a certain duration
2) Add to a parking list
3) Schedule out (park/block)

Lock throughput =

/
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[ssues with blocking
synchronization primitives

* High memory footprint for NUMA-aware locks

* Inefficient blocking strategy
- Scheduling overhead in the critical path

- Cache-line contention while scheduling out



CST lock

e NUMA-aware lock

* Low memory footprint
- Allocate socket specific data structure when used

- 1.5-10X memory less memory consumption

* Efficient parking/wake-up strategy
- Limit the spinning up to a waiter’s time quantum

- Pass the lock to an active waiter

- Improves scalability by 1.2-4.7X



CST lock design

e NUMA-aware lock

» Cohort lock principle

+ Mitigates cache-line contention and bouncing

* Memory efficient data structure
> Allocate socket structure (snode) when used

> Snodes are active until the life-cycle of the lock

+ Does not stress the memory allocator



CST lock design

* NUMA-aware parking list

» Maintain separate per-socket parking lists for
readers and writers

+ Mitigates cache-line contention in over-subscribed
scenario

+ Allows distributed wake-up of parked readers



CST lock design

e Remove scheduler intervention

» Pass the lock to a spinning waiter

» Waiters park themselves if more than one tasks are
running on a CPU (system load)

+ Scheduler not involved in the critical path

+ Guarantees forward progress of the system
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| ock instantiation

° Initially NO SﬂOdeS are Threads: | T1/s1 | | T2/s1 || T3/51 || T4ss2
allocated

* Thread in a particular socket st 51, 52
socket initiates an global_tail

allocation Socket 1

Socket 2




CST lock phase

CST lock instance Threads:

socket_list

global_tail

* Allocate thread specific structure on the stack
* Three states for each node
- L = locked
- UW - unparked/spinning waiter
- PW - parked / blocked / scheduled out waiter



CST lock instance

socket_list [S1]

CST lock phase

Threads:

L

waiting_tail |||

global_tail

parking_tail  —>{||

Socket 1

snode_next

* Allocate thread specific structure on the stack

 Three states for each node

- L - |locked

- UW - unparked/spinning waiter

- PW - parked / blocked / scheduled out waiter

T1/51




CST lock instance

socket_list [S1]

global_tail

Socket 1

CST lock phase

Threads:
L T1B L
waiting_tail next —| |1
parking_tail P || p_next — ||
snode_next

* Allocate thread specific structure on the stack

 Three states for each node

- L - locked

- UW = unparked/spinning waiter

- PW — parked / blocked / scheduled out waiter

T1/51




CST lock phase

Threads: | T1/51

CST lock instance Acquire global lock
socket_list [S1] a L T1 B L
global_tail waiti.ng_tai-l T next — ||
parking_tail ||I o_next Y ||
Socket 1 snode_next

* Allocate thread specific structure on the stack

* Three states for each node
- L - locked
- UW = unparked/spinning waiter

- PW — parked / blocked / scheduled out waiter



CST lock instance

socket_list [S1]

global_tail

Socket 1

CST lock phase

8

o

Threads T1/51 T2/51 T3/51
uw T3 uw

next —_) next — |1

p_next -—Pl |1 p_next —| |1

T1 L T2
waiting_tail —) next —
parking_tail —>| | | p_next —>| | |
snode_next

* Allocate thread specific structure on the stack

 Three states for each node

- L - locked

- UW = unparked/spinning waiter

- PW — parked / blocked / scheduled out waiter




CST lock instance

socket_list [S1, S2]

global_tail

Socket 1

Uy

Socket 2

CST lock phase

Threads: | T1/51 T2/51 T3/51 T4/52
a L T1 L T2 uw 13 uw
waiting_tail =) next —_ next ) next — ||
parking_tail —>||| p_next —}||| p_next —}||| p_next — |
snode_next

uw

waiting_tail

parking_tail

snode_next

* Allocate thread specific structure on the stack

 Three states for each node

- L - locked

- UW = unparked/spinning waiter

- PW — parked / blocked / scheduled out waiter




CST lock phase: blocking/parking

Threads: | T1/51 T2/51 T3/51 T4/S2

CST lock instance

socket_list [S1, S2] a L 11 a

L T2 T3 uw
global_tail waiting tail ) next — next ) next —) I I

parking_tail p_next —> ||J p_next -—)lll p_next —p II
Socket 1 snode_next
rh uw T4a L
waiting_tail E next
parking_tail '—'}I I | p_next
Socket 2 snode_next

* Before scheduling out, waiters atomically
- Update the status from UW to PW
- Add themselves to the parking list



CST lock instance

CST unlock phase

socket_list [S1]

global_tail

Threads: | T1/s1 || T2/51 || T3/51
waiting_tail e e 4 o — .
) parking_tail p_next o_next o next
Socket 1 snode_next

Pass the lock to a spinning waiter




CST lock instance

CST unlock phase

socket_list [S1]

T3/51

Threads: | T1/s1 -
a L T1a

global_tail

L L [ uw B[ uw
waiting_tail —> next —_ next —) next
. arking_tail
p 8- p_next p_next p_next
Socket 1 snode_next

Pass the lock to a spinning waiter




CST lock instance

socket_list [S1]

CST unlock phase

8 .

global_tail

socket_list [S1]

global_tail

L
waiting_tail e s

—) . )
parking_tail b_next

Socket 1 snode_next
8
waiting_tail —) —t

—) - -
parking_tail o_next

Socket 1 snode_next

12

T3/51

Threads: | T1/51 -
uw T3 uw
next —) next
p_next p_next
T3 uw

next —) next
p_next p_next

Pass the lock to a spinning waiter




CST unlock phase

Threads: | T1/51 - T3/S1

CST lock instance

socket_list [S1] a L T1a

L T2 uw T3 uw
waiting_tail —)
global_tail —) & next —> next —) next
— parking_tail
p_next p_next p_next
Socket 1 snode_next

socket_list [S1] a L T'la L T T3 UW
= T |
global_tail —) walting fal next —_— next —) next

parking_tail o_next J m— o
Socket 1 snode_next |

socket_list [S1] a L

-0

waiting_tail
lobal_tail —) next — e
8 - parking_tail J p_next p_next

snode_next |

Socket 1

Pass the lock to a spinning waiter



Implementation

* Implemented in the Linux kernel

e Structures modified
- File system: inode

- Memory management: mmap sem

 Please see our paper

- Read-write lock

- Pseudo code

https://github.com/sslab-gatech/cst-locks



Fvaluation

* Performance of locks in terms of scalability and
memory footprint?

* Blocking/parking strategy effectiveness?

* Setup: 8-socket, 120-core NUMA machine
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Case study: Psearchy
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* Overcomes memory footprint and scheduling overhead
* Uses 1.5-9.1X less memory than the Cohort lock

* Improves throughput by 1.4-1.6X



Effective parking strategy

File creation (mutex) Enumerate a directory (rwsem)
05 |
240
04 200
U 160
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wn
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@) Vanilla e 80
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0.1 40
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#thread #thread

* Better performance for both under- and over-
subscribed scenario

* Improves scalability by 1.3-3.7X



Conclusion

* Two blocking synchronization primitives

- NUMA-aware mutex and read-write semaphore

* Dynamically allocated data structure

- Resolve NUMA-aware lock's footprint issue

* Efficient spin-then-park strategy
- Scheduling-aware parking/wake-up strategy

- Mitigate scheduler interaction

Thank you!
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