Scalable NUMA-aware
Blocking Synchronization Primitives

Sanidhya Kashyap, Changwoo Min, Taesoo Kim

Georgia nsiituie
o Technhologyy

The rise of big NUMA mac

Find HP News

Related media contacts

Press Release: Novemnber 22, 2011
Topics: Converged Infrastructure, Instant-On Enterprise

Share ok Print

HP to Transform Server Market with Single Platform for
Mission-critical Computing

Expanded HP Converged Infrastructure delivers industry-leading choice, investment
protection

PALO ALTO, Calif. -- HP today announced "Odyssey,” a project to redefine the future of mission-
critical computing with a development roadmap that will unify UNIX® and x86 server
architectures to bring industry-leading availability, increased performance and
uncompromising client choice to a single platform.

Organizations are challenged with increasingly stringent service-level agreements for their
most demanding workloads, alongwith the pressure to be mare efficient with their IT budgets
and resources. They need the availability and resilience of UNIX-based platforms along with the
familiarity and cost-efficiency of industry-standard platforms.

'
Using advanced technology across a common, modular HP BladeSystem arcrlitecture, HP is
developing platforms to enable clients to choose the best environment aligned to their
organizations’ needs without compromise, helping ensure investment protection for the long
term.

HP’s new development roadmap includes ongoing innovations to HP Integrity servers, HP
NonStop systems and the HP-UX and OpenVMS operating systems. The roadmap also includes
delivering blades with Intel® Xeon® processors for the HP Superdome 2 enclosure (code name
“DragonHawk") and the scalable c-Class blade enclosures (code named "Hydralynx”), while
fortifying Windows® and Linux environments with innovations from HP-UX within the next two
years.

With the availability of “DragonHawk,” clients will be able to run mission-critical workloads on
HP-UX on Intel Itanium®-based blades while simultaneously running workloads on Microsoft
Windows or Red Hat Enterprise Linux on Intel Xeon-based blades in the same Superdome 2
enclosure.

"Clients have been asking us to expand the mission-critical experience that is delivered today
with HP-UX on Integrity to an x86-based infrastructure,” said Martin Fink, senior vice president
and general manager, Business Critical Systems, HP. “HP plans to transform the server
lanAsrane far missinn-rriticAl commintine b nsine the flexihilitv nf HP RladaSustem and hrinming

Terri Molini, HP
terri.molini@hp.com

Lee Figora, Burson-Marsteller for HP

lee. figora@bm. com
View All Media Contacts

Resources
Mewsroom
About us
Leadership
Investor relations

Social media

£ as Y EQ o

Nines

The rise of big NUMA machines

Press Release: Novemnber 22, 2011
Topics: Converged Infrastructure, Instant-On Enterprise

Share ok Print

Find HP News

HP to Transform Server Market with Single Platform for

Mission-critical Computing
Expanded HP Converged Infrastructure delivers industry-leading choice, investment

protection

PALO ALTO, Calif
critical computir
architectures to
uncompromising

Organizations at
maost demanding
and resources. 1
familiarity and c

Using advanced
developing platf
organizations’ ni
term.

HP’s new develc
NonStop systen
delivering blade
“DragonHawk")
fortifying Windo
years.

With the availab
HP-UX on Intel It
Windows or Red
enclosure.

"Clients have be
with HP-UX an i

and general mat
landsrane for m

Related media contacts

Terri Molini, HP
terri.molini@hp.com

T e T ST

Press Release

Oracle Announces Breakthrough Processor and
Systems Design with SPARC M7

Dramatic Advancements in Memory Protection, Encryption
Acceleration, and In-memory Database Processing Deliver End-to-End
Security and Efficiency for Oracle Engineered Systems and Servers

ORACLE OPENWORLD, SAN FRANCISCO —Oct 26, 2015

Oracle today introduced an all-new family of SPARC systems built on the revolutionary 32-core, 256-thread
SPARC M7 microprocessor. The systems feature Security in Silicon for advanced intrusion protection and
encryption; SQL in Silicon that delivers unparalleled database efficiency; and world record performance
spanning enterprise, big data, and cloud applications.

The new SPARC M7 processor-based systems, including the Oracle SuperCluster M7 engineered system and
SPARC T7 and M7 servers, are designed to seamlessly integrate with existing infrastructure and include fully
intearated virtualization and manaacement for cloud Al exictina commercial and custom annlications will run on

The rise of big NUMA machines

2o o Print A
Topics: Converged Infrastructure, Instant-On Enterprise Find HP News

HP to Transform Server Market with Single Platform for
Mission-critical Computing Related media contacts

Expanded HP Converged Infrastructure delivers industry-leading choice, investment Torti Molini. HP
protection terri. molini@hp.com

T e T ST

paLo ALTO, calit PFess Release

critical computir
architectures to

emreninc | Qracle Announces Breakthrough Processor and
naemnan | SYStems Design with SPARC M7

and resources. 1
familiarity and c

snes Dramatic Adv— Magigngd for large-scale, in-memory

developingplatl m ~~a|@aration
7

organizations’ ni

=n securityand | gpplications in the cloud

HP's new develc

fertonsvsten ORACLE OPENWOI X1 Instances are a new addition to the Amazon EC2 memory-

delivering blade
“DragonHawk")

fortitying Windo optimized instance family and are designed for running large-scale, in-
years,

With the availab memory applications and in-memory databases in the AWS cloud. X1
HP-UX onIntel i

oo racle today introdu INNStaNces offer 1,952 GiB of DDR4 based memory, 8x the memory

“Cllientshavebe SPARC M7 micropro Offel'ed by any Other Amazon ECQ InStance EaCh X-I InStance IS
W|Lh HP—UXlon " encryption; SQL in S
e spanning enterprise, POWered by four Intel® Xeon® E7 8880 v3 (Haswell) processors and

offers 128 vCPUs.
The new SPARC M7

SPARC T7 and M7 s

e e Compared to other EC2 instances, X1 instances have the lowest price

Importance of NUMA awareness

NUMA node 1 NUMA node 2
W6 | W5 W3
N g
W1 W4

-

N

[—

W2

NUMA oblivious

w1]w2]wa]walwelws

~

File

Importance of NUMA awareness

NUMA node 2

NUMA node 1

W6 |=

\

W1

-

N

[—

W5

W4

S

c

W2

NUMA oblivious

w1]w2]wa]walwelws

NUMA aware/hierarchical

w1]welw2]wawa]ws

~

File

Importance of NUMA awareness

NUMA node 1 NUMA node 2 NUMA oblivious

w1]w2]wa]walwelws

W6 |« W5 W3
W1 W4
ﬁ | ‘\ NUMA aware/hierarchical

w2 w1]welw2]wawa]ws

L ock's research efforts and their use

Lock's research efforts

Dekker's algorithm (1962)
Semaphore (1965)

E"Lamport's bakery algorithm (1 974):5

Backoff lock (1989)
Ticket lock (1991)
MCS lock (1991)
HBO lock (2003)

. Hierarchical lock - HCLH (2006)
Flat combining NUMA lock (2011) |

Remote Core locking (2012)
Cohort lock (2012)

RW cohort lock (2013)
Malthusian lock (2014)
HMCS lock (2015)
AHMCS lock(2016)

..

Linux kernel lock
adoption / modification

L ock's research efforts and their use

Lock's research efforts
~ Dekker's algorithm (1962)
. Semaphore (1965) |
gLamport's bakery algorithm (1 974)25
: Backoff lock (1989) :

Ticket lock (1991)

MCS lock (1991)

‘ HBO lock (2003) |
Hierarchical lock - HCLH (2006) |

Flat combining NUMA lock (2011)
Remote Core locking (2012)

Cohort lock (2012)

RW cohort lock (2013)

Malthusian lock (2014)

HMCS lock (2015)
AHMCS lock(2016)

~N

UMA-

i aware

locks

/

Linux kernel lock
adoption / modification

L ock's research efforts and their use

Dekker's algorithm (1962)
Semaphore (1965)

E"Lamport's bakery algorithm (1 974):5

Backoff lock (1989)
Ticket lock (1991)
MCS lock (1991)

‘ HBO lock (2003) |
Hierarchical lock - HCLH (2006)

Flat combining NUMA lock (2011)

Remote Core locking (2012)

Cohort lock (2012)

RW cohort lock (2013)

Malthusian lock (2014)

HMCS lock (2015)
AHMCS lock(2016)

~N

UMA-
aware
locks

/

| Spinlock — TTAS

" Spinlock — gspinlock
. Mutex — TTAS + spin + block
. Rwsem — TTAS + spin + block

Linux kernel lock
adoption / modification

..

. 1990s

i Semaphore — TTAS + block

. Rwsem - TTAS +block ...
“Spinlock — ticket 5011
. Mutex — TTAS + block

.Rwsem - TTAS +block
“Spinlock — ticket 2014

- Mutex — TTAS + spin + block
. Rwsem — TTAS + spin + block

L ock's research efforts and their use

_Lock's research efforts Linux kernel lock
Dekker's algorithm (1962) adoption / modification

,‘ Semaphore (1965) S —

Lamport's bakery algorlthm (1974) Q gzlr:foctl:o?eTTATSTAS bk 1990s

Adopting NUMA aware locks is not easy

Remote Core locking (2012) ¢ "YYW Mutex — TTAS + spin + block
Cohort lock (2012) aware Rwsem — TTAS + spin + block
RW cohortlock 2013) + 10CkS @) “spiniock - gspinlock 2016
Malthusian lock (2014) | | Mutex — TTAS + spin + block ’
HMCS lock (2015) | . Rwsem — TTAS + spin + block

AHMCS lock(2016) / V

Issues with NUMA-aware primitives

* Memory footprint overhead

- Cohort lock single instance: 1600 bytes

- Example: 1-4 GB of lock space vs 38 MB of Linux’s
lock for 10 M inodes

* Does not support blocking/parking behavior

Blocking/parking approach

* Under subscription
- #threads <= #cores Gnder-sum@
* Over subscription [N

- #threads > #cores /
1) Spin for a certain duration

* Spin-then-park strategy

Lock throughput =

2) Add to a parking list #ithread -
3) Schedule out (park/block)

Blocking/parking approach

* Under subscription

- #threads <= #cores (under-subscription Q@ubscription:l
» Over subscription “ VJ

- #threads > #cores /

1) Spin for a certain duration

2) Add to a parking list fithread

3) Schedule out (park/block)

* Spin-then-park strategy

Lock throughput =

Blocking/parking approach

* Under subscription

- #threads <= #cores (under-subscription %ubscription:l
» Over subscription “ VJ

- #threads > #cores /

1) Spin for a certain duration

2) Add to a parking list fithread

3) Schedule out (park/block)

* Spin-then-park strategy

Lock throughput =

Blocking/parking approach

* Under subscription

- #threads <= #cores (under-subscription %ubscription:l
» Over subscription “ VJ

- #threads > #cores /

1) Spin for a certain duration

2) Add to a parking list fithread

3) Schedule out (park/block)

— Parking |

* Spin-then-park strategy

Lock throughput =

Y

Blocking/parking approach

* Under subscription

- #threads <= #cores [under-sub

s@@ Q@ubscnptlon:l
A

* Over subscription

- #threads > #cores

* Spin-then-park strategy
1) Spin for a certain duration
2) Add to a parking list
3) Schedule out (park/block)

Lock throughput =

/

Sp|n + park

Y

#thread —

— Parking |

[ssues with blocking
synchronization primitives

* High memory footprint for NUMA-aware locks

* Inefficient blocking strategy
- Scheduling overhead in the critical path

- Cache-line contention while scheduling out

CST lock

e NUMA-aware lock

* Low memory footprint
- Allocate socket specific data structure when used

- 1.5-10X memory less memory consumption

* Efficient parking/wake-up strategy
- Limit the spinning up to a waiter’s time quantum

- Pass the lock to an active waiter

- Improves scalability by 1.2-4.7X

CST lock design

e NUMA-aware lock

» Cohort lock principle

+ Mitigates cache-line contention and bouncing

* Memory efficient data structure
> Allocate socket structure (snode) when used

> Snodes are active until the life-cycle of the lock

+ Does not stress the memory allocator

CST lock design

* NUMA-aware parking list

» Maintain separate per-socket parking lists for
readers and writers

+ Mitigates cache-line contention in over-subscribed
scenario

+ Allows distributed wake-up of parked readers

CST lock design

e Remove scheduler intervention

» Pass the lock to a spinning waiter

» Waiters park themselves if more than one tasks are
running on a CPU (system load)

+ Scheduler not involved in the critical path

+ Guarantees forward progress of the system

| ock instantiation

* Initially no snodes are Threads:
allocated

socket_list

* Thread in a particular
socket initiates an

global_tail

allocation

| ock instantiation

* Initially no snodes are Threads: | Tus:
allocated

* Thread in a particular socket st 51
socket initiates an global tail

allocation Socket 1

| ock instantiation

° Initially NO SﬂOdeS are Threads: | T1/51 | | T2/51 || T3/51
allocated

* Thread in a particular socket st 51
socket initiates an global_tail

allocation Socket 1

| ock instantiation

° Initially NO SﬂOdeS are Threads: | T1/s1 | | T2/s1 || T3/51 || T4ss2
allocated

* Thread in a particular socket st 51, 52
socket initiates an global_tail

allocation Socket 1

Socket 2

CST lock phase

CST lock instance Threads:

socket_list

global_tail

* Allocate thread specific structure on the stack
* Three states for each node
- L = locked
- UW - unparked/spinning waiter
- PW - parked / blocked / scheduled out waiter

CST lock instance

socket_list [S1]

CST lock phase

Threads:

L

waiting_tail |||

global_tail

parking_tail —>{||

Socket 1

snode_next

* Allocate thread specific structure on the stack

 Three states for each node

- L - |locked

- UW - unparked/spinning waiter

- PW - parked / blocked / scheduled out waiter

T1/51

CST lock instance

socket_list [S1]

global_tail

Socket 1

CST lock phase

Threads:
L T1B L
waiting_tail next —| |1
parking_tail P || p_next — ||
snode_next

* Allocate thread specific structure on the stack

 Three states for each node

- L - locked

- UW = unparked/spinning waiter

- PW — parked / blocked / scheduled out waiter

T1/51

CST lock phase

Threads: | T1/51

CST lock instance Acquire global lock
socket_list [S1] a L T1 B L
global_tail waiti.ng_tai-l T next — ||
parking_tail ||I o_next Y ||
Socket 1 snode_next

* Allocate thread specific structure on the stack

* Three states for each node
- L - locked
- UW = unparked/spinning waiter

- PW — parked / blocked / scheduled out waiter

CST lock instance

socket_list [S1]

global_tail

Socket 1

CST lock phase

8

o

Threads T1/51 T2/51 T3/51
uw T3 uw

next —_) next — |1

p_next -—Pl |1 p_next —| |1

T1 L T2
waiting_tail —) next —
parking_tail —>| | | p_next —>| | |
snode_next

* Allocate thread specific structure on the stack

 Three states for each node

- L - locked

- UW = unparked/spinning waiter

- PW — parked / blocked / scheduled out waiter

CST lock instance

socket_list [S1, S2]

global_tail

Socket 1

Uy

Socket 2

CST lock phase

Threads: | T1/51 T2/51 T3/51 T4/52
a L T1 L T2 uw 13 uw
waiting_tail =) next —_ next) next — ||
parking_tail —>||| p_next —}||| p_next —}||| p_next — |
snode_next

uw

waiting_tail

parking_tail

snode_next

* Allocate thread specific structure on the stack

 Three states for each node

- L - locked

- UW = unparked/spinning waiter

- PW — parked / blocked / scheduled out waiter

CST lock phase: blocking/parking

Threads: | T1/51 T2/51 T3/51 T4/S2

CST lock instance

socket_list [S1, S2] a L 11 a

L T2 T3 uw
global_tail waiting tail) next — next) next —) I I

parking_tail p_next —> ||J p_next -—)lll p_next —p II
Socket 1 snode_next
rh uw T4a L
waiting_tail E next
parking_tail '—'}I I | p_next
Socket 2 snode_next

* Before scheduling out, waiters atomically
- Update the status from UW to PW
- Add themselves to the parking list

CST lock instance

CST unlock phase

socket_list [S1]

global_tail

Threads: | T1/s1 || T2/51 || T3/51
waiting_tail e e 4 o — .
) parking_tail p_next o_next o next
Socket 1 snode_next

Pass the lock to a spinning waiter

CST lock instance

CST unlock phase

socket_list [S1]

T3/51

Threads: | T1/s1 -
a L T1a

global_tail

L L [uw B[uw
waiting_tail —> next —_ next —) next
. arking_tail
p 8- p_next p_next p_next
Socket 1 snode_next

Pass the lock to a spinning waiter

CST lock instance

socket_list [S1]

CST unlock phase

8 .

global_tail

socket_list [S1]

global_tail

L
waiting_tail e s

—) .)
parking_tail b_next

Socket 1 snode_next
8
waiting_tail —) —t

—) - -
parking_tail o_next

Socket 1 snode_next

12

T3/51

Threads: | T1/51 -
uw T3 uw
next —) next
p_next p_next
T3 uw

next —) next
p_next p_next

Pass the lock to a spinning waiter

CST unlock phase

Threads: | T1/51 - T3/S1

CST lock instance

socket_list [S1] a L T1a

L T2 uw T3 uw
waiting_tail —)
global_tail —) & next —> next —) next
— parking_tail
p_next p_next p_next
Socket 1 snode_next

socket_list [S1] a L T'la L T T3 UW
= T |
global_tail —) walting fal next —_— next —) next

parking_tail o_next J m— o
Socket 1 snode_next |

socket_list [S1] a L

-0

waiting_tail
lobal_tail —) next — e
8 - parking_tail J p_next p_next

snode_next |

Socket 1

Pass the lock to a spinning waiter

Implementation

* Implemented in the Linux kernel

e Structures modified
- File system: inode

- Memory management: mmap sem

 Please see our paper

- Read-write lock

- Pseudo code

https://github.com/sslab-gatech/cst-locks

Fvaluation

* Performance of locks in terms of scalability and
memory footprint?

* Blocking/parking strategy effectiveness?

* Setup: 8-socket, 120-core NUMA machine

Jobs/hour

Case study: Psearchy

Throughput

20 ~[hrous e — 160 — Memory utilization
 Vanilla se— | | | | -
; M
2007 Cohort memm e >
~— 1200 ®: B -® B B: BB W
)
160 CST * 77 C
' ' 'C
: o
120 [g ST ETISIRNE SRPRIEN Mo o8B R B B B ¥R ¥
| O
; Y—
U S s S T -
s O
; S T B BEEE IR RSN BN BRSNS B
3 -
40 e SRR RN Q
; =
o LI | | | | | | 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
#thread #thread

* Overcomes memory footprint and scheduling overhead
* Uses 1.5-9.1X less memory than the Cohort lock

* Improves throughput by 1.4-1.6X

Effective parking strategy

File creation (mutex) Enumerate a directory (rwsem)
05 |
240
04 200
U 160
@ 0.3
wn
~ 120
wn
0 0.2
@) Vanilla e 80
= Cohort i

0.1 40

CST i

0 I I I I I I I

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
#thread #thread

* Better performance for both under- and over-
subscribed scenario

* Improves scalability by 1.3-3.7X

Conclusion

* Two blocking synchronization primitives

- NUMA-aware mutex and read-write semaphore

* Dynamically allocated data structure

- Resolve NUMA-aware lock's footprint issue

* Efficient spin-then-park strategy
- Scheduling-aware parking/wake-up strategy

- Mitigate scheduler interaction

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

