
Towards	Production-Run	Heisenbugs	
Reproduction	on	Commercial	Hardware	

1

Shiyou	Huang		Bowen	Cai and		Jeff	Huang

2

What’s	a	coder’s	worst	
nightmare?

https://www.quora.com/What-is-a-coders-worst-nightmare

3

The	bug	only	occurs	in	production	
but	cannot	be	replicated	locally.

https://www.quora.com/What-is-a-coders-worst-nightmare

Heisenbug

4

When	you	trace	them,	they	disappear!

Heisenbug

5

When	you	trace	them,	they	disappear!

• Localization	is	hard

Heisenbug

6

When	you	trace	them,	they	disappear!

• Localization	is	hard
• reproduction	is	hard

Heisenbug

7

When	you	trace	them,	they	disappear!

• Localization	is	hard
• reproduction	is	hard
• never	know	if	it	is	fixed…

A	motivating	example

8

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)

✗

Init:	x=1,	y=2

http://stackoverflow.com/questions/16159203/

z=1

x=2,	y=3

x+1==y

contradiction!

A	motivating	example

9

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)

✗

Init:	x=1,	y=2

http://stackoverflow.com/questions/16159203/

z=1

x=2,	y=3

x+1==y

contradiction!

PSO

A	motivating	example

10

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)

✗

Init:	x=1,	y=2

http://stackoverflow.com/questions/16159203/

z==1

x=2,	y=3

x+1==y

contradiction!

$12	million	loss	of	equipment!

Record	&	Replay	(RnR)

11

Failure	Execution

RecordReplay

Goal: record the	non-determinism	at	runtime	and	reproduce the	failure

Record	&	Replay	(RnR)

12

Failure	Execution

RecordReplay

Goal: record the	non-determinism	at	runtime	and	reproduce the	failure

• runtime	overhead
• the	ability	to	reproduce	
failures

Related	Work
• Software-based	approach

• order-based:	fully	record	shared	memory	dependencies	at	runtime

• LEAP[FSE’10],	Order[USENIX	ATC’11],	Chimera[PLDI’12],	Light[PLDI’15]	RR[USENIX	ATC’17]…

• Chimera:	>	2.4x

• search-based:	partially	record	the	dependencies	at	runtime	and	use	offline	analysis	
(e.g.	SMT	solvers)	to	reason	the	dependencies

• ODR[SOSP’09],	Lee	et	al.	[MICRO’09],	Weeratunge et	al.[ASPLOS’10],	CLAP[PLDI’13]…

• CLAP:	0.9x	– 3x

• Hardware-based	approach
• Rerun[ISCA’08],	Delorean[ISCA’08],	Coreracer[MICRO’11],	PBI[ASPLOS’13]…

• rely	on	special	hardware	that	are	not	deployed	
13

Reality	of	RnR

14

• high	overheads
• failing	to	reproduce	failures	
• lack	of	commodity	hardware	

support

In	production

Contributions

Goal:	record	the	execution	at	runtime	with	low	overhead	and
faithfully reproduce	it	offline

Ø RnR based	on	control	flow	tracing	on	commercial	hardware	(Intel	PT)	

Ø core-based constraints	reduction	to	reduce	the	offline	computation

Ø H3,	evaluated	on	popular	benchmarks	and	real-world	applications,	

overhead:	1.4%-23.4%

15

Intel	Processor Trace	(PT)

PT:	Program	control	flow	tracing,	supported	on	5th and	6th
generation	Intel core
• Low	overhead,	as	low	as	5%1

• Highly	compacted	packets,	<1	bit	per	retired	instruction

• One	bit	(1/0)	for	branch	taken	indication

• Compressed	branch	target	address

161:	https://sites.google.com/site/	intelptmicrotutorial.	

PT	Tracing	Overhead
Intel CPU
core 0...n

Driver

Packets stream
(per logical CPU)

Binary
Image files

Intel PT
Software
Decoder

Reconstructed
execution

Configure & Enable
Intel PT

Runtime data

Figure 4: Components of Intel Processor Tracing (PT).

gram control flow by code instrumentation is difficult or
impossible. For example, if a failure is caused by a bug
in the uninstrumented external code, the constraints gen-
erated by CLAP may be incomplete and hence fail to
reproduce the bug.

2.2 Hardware Control-Flow Tracing
Tracing control flow at the hardware level opens a door to
apply CLAP in production runs by addressing the afore-
mentioned limitations in three ways. First, hardware-
supported control flow tracing is significantly more ef-
ficient than software-level path-recording. Compared to
the 10%-3X overhead by software path-recording, PT
achieves as low as 5% runtime overhead [2]. Second,
hardware can track the full control flow of the code ex-
ecuted on each core. PT can not only trace the applica-
tion code, but also the whole operating system kernel [2].
Third, tracing the control flow on each core enables a
significant reduction of the complexity of the read-write
constraints, because reads and writes from the same core
are ordered already.

Next, we first review the basics of PT and then show its
performance improvement over software path-recording
on PARSEC 3.0 benchmarks [5].

Intel PT. As depicted in Figure 4, PT consists of two
main components: tracing and decoding. For tracing,
it only records the instructions that are related to the
change of the program control flow and omits everything
that can be deduced from the code (e.g., unconditional
direct jumps). For each conditional branch executed, PT
generates a single bit (1/0) to indicate whether a condi-
tional branch is taken or not taken. As such, PT tracks
the control flow information, such as loops, conditional
branches and function calls of the program, with minimal
perturbation, and outputs a highly compact trace.

For decoding, PT provides a decoding library [1] to
reconstruct the control flow from the recorded raw trace.
It first synchronizes the packet streams with the synchro-
nization packets generated during tracing, and then iter-
ates over the instructions from the binary image to iden-
tify what instructions have been executed. Only when the

Table 1: Runtime and space overhead of PT on PARSEC.

Program Native PT
time (s) time (s) OH(%) trace

bodytrack 0.557 0.573 2.9% 94M
x264 1.086 1.145 5.4% 88M
vips 1.431 1.642 14.7% 98M

blackscholes 1.51 1.56 9.9% 289M
ferret 1.699 1.769 4.1% 145M

swaptions 2.81 2.98 6.0% 897M
raytrace 3.818 4.036 5.7% 102M
facesim 5.048 5.145 1.9% 110M

fluidanimate 14.8 15.1 1.4% 1240M
freqmine 15.9 17.1 7.5% 2468M

Avg. 4.866 5.105 4.9% 553M

decoder cannot decide the next instruction (e.g., when it
encounters a branch), the raw trace is queried to guide
the decoding process.

PT is configurable via a set of model-specific registers
by the kernel driver. It provides a privilege-level filter-
ing function for developers to decide what code to trace
(i.e. kernel vs. user-space) and a CR3 filtering function
to trace only a single application or process. PT on Intel
Skylake processors also supports filtering by the instruc-
tion pointer (IP) addresses. This feature allows PT to se-
lectively trace code that is only within a certain IP range,
which can further reduce the tracing perturbation.

PT Performance. Table 1 reports the runtime and
space overhead of PT on the PARSEC 3.0 benchmarks.
We report the execution time of the programs without
and with PT tracing (and the trace size), marked as native
and PT respectively. Among the 10 benchmarks, PT in-
curs 1.4% to 14.7% runtime overhead (4.9% on average)
and 88MB to 2.4GB space overhead (0.5GB on average).

3 H3

In this section, we present the technical details of H3.
As we have described in Figure 1, H3 integrates hard-
ware control-flow tracing with offline symbolic con-
straint analysis to reproduce Heisenbugs. Although the
overall flow is easy to understand, there are three techni-
cal challenges in the integration:

1. Absence of the thread information. There is
no thread information from the PT traces. It is
unknown which instruction is executed by which
thread, and hence difficult to construct the inter-
thread synchronization and memory dependency
constraints.

2. Gap between low-level hardware traces and
high-level symbolic traces. The decoded execu-

4

17

4.9%	overhead	on	
executions	of	PARSEC	3.0	
on	average

Challenges	

• PT	trace:	low-level	representation	(assembly	instruction)

• Absence	of	the	thread	information	

• No	data	values	of	memory	accesses	

18

Solutions

• PT	trace:	low-level	representation	&	no	data	values
• Idea:	extract	the	path	profiles	from	PT	trace	and	re-execute	the	
program	by	KLEE	to	generate	symbol	values

• Absence	of	the	thread	information	
• Idea:	use	thread	context	switch	information	by	Perf	

19

H3	Overview
core 0 core 1

core 3core 2

T0 Tn...Binary image

Execution recorded
by each core

Packet log Decode

 user end
Symbolic trace
of each thread

1. Constraints formula
2. SMT solver A global

schedule

Recording & Decoding Offline Constraints Construction & Solving

- Path constraints
- Core-based read-write constraints
- Synchronization constraints
- Memory order constraints

- Path profiles
generation

- Symbolic
execution

PT tracing

20

Phase	1:	Control-flow	tracing	

Phase	2:	Offline	analysis	

Reconstruct	the	execution	on	each	core	by	decoding	the	packets	generated	by	PT	
and	thread	information	from	Perf		

• Path	profiles	of	each	thread
• Symbolic	trace	of	each	thread
• SMT	constraints	over	the	trace

Example

21

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

A

CB

D

FE

Packets
log+

line 1
line 2

...
line n

Decoding

Matching
line numbers

Binary
image

reconstructed execution program's cotrol flow

Binary	image

Trace
Packets

Step1:	Collecting	path	profiles	of	each	thread

libipt

Init:	x=1,	y=2
PT:	tracing	control-flow	of	the	program’s	execution

perf	context	switch	events
(TID,	CPUID,	TIME…)

T1

A

CB

D

FE

Packets
log+

line 1
line 2

...
line n

Decoding

Matching
line numbers

Binary
image

reconstructed execution program's cotrol flow

T2

Example

22

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

BB1

T1	:	bb1

T2	:	bb1,	bb2

BB3

BB1

BB2

Step1:	Collecting	path	profiles	of	each	thread

Match	to	*.ll

Init:	x=1,	y=2
PT:	tracing	control-flow	of	the	program’s	execution

A

CB

D

FE

Packets
log+

line 1
line 2

...
line n

Decoding

Matching
line numbers

Binary
image

reconstructed execution program's cotrol flow

A

CB

D

FE

Packets
log+

line 1
line 2

...
line n

Decoding

Matching
line numbers

Binary
image

reconstructed execution program's cotrol flow

T2

T1

path	profile

Example

23

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2
Step2:	symbolic	trace	generation	

KLEE[OSDI’08]:	execute	the	thread	along	the	path	profile

𝑊"# = 0
𝑅'(,𝑊'(= 𝑅'(+ 1
𝑅,-,𝑊,- = 𝑅,- + 1
𝑊". = 1

𝑇𝑟𝑢𝑒 ≡ 𝑅"4 == 1
𝑅'5 + 1 ≠ 𝑅,5

T1

T2

Using	symbol	values	to	represent	
concrete	values,	e.g.,	
𝑊"# :	value	written	to	z	at	line	2
𝑅'(:			value	read	from	z	at	line	3

Example

24

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2 Step	3:	computing	global	failure	schedule
CLAP[PLDI’13]:	Reason	dependencies	of	memory	accesses	

Order	variable	O	represents	the	order	of	a	statement,	e.g.,
O2<O3

means	2:z=0 happen	before	3:	x++

T1

T2

Global

Example

25

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2
Step	3:	computing	global	failure	schedule

CLAP[PLDI’13]:	Reason	dependencies	of	memory	accesses	

	
	
	
	

Read-Write	Constraints	
("#$ = 0	 ∧)$ <)+) ∨	

	("#$ = .#/ 	∧)/ <)$ ∧ ()+ <)/ ∨)$ <)+))	
Memory	Order	Constraints	

SC	 PSO	
)0 <)+ <)123 <)143 <)523 	

<)543 <)/ <)6	
)$ <)78 <)79	

)0 <)+)/ <)6	
)123 <)143)523 <)543 	

)$ <)78 <)79	
Path	Constraints	 Failure	Constraints	

"#$ = 1	 "87 + 1! = "97	

match	a	read	to	a	write

Example

26

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2 Step	3:	computing	global	failure	schedule
CLAP[PLDI’13]:	Reason	dependencies	of	memory	accesses	

	
	
	
	

Read-Write	Constraints	
("#$ = 0	 ∧)$ <)+) ∨	

	("#$ = .#/ 	∧)/ <)$ ∧ ()+ <)/ ∨)$ <)+))	
Memory	Order	Constraints	

SC	 PSO	
)0 <)+ <)123 <)143 <)523 	

<)543 <)/ <)6	
)$ <)78 <)79	

)0 <)+)/ <)6	
)123 <)143)523 <)543 	

)$ <)78 <)79	
Path	Constraints	 Failure	Constraints	

"#$ = 1	 "87 + 1! = "97	

rf

HB match	a	read	to	a	write

Example

27

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2 Step	3:	computing	global	failure	schedule
CLAP[PLDI’13]:	Reason	dependencies	of	memory	accesses	

	
	
	
	

Read-Write	Constraints	
("#$ = 0	 ∧)$ <)+) ∨	

	("#$ = .#/ 	∧)/ <)$ ∧ ()+ <)/ ∨)$ <)+))	
Memory	Order	Constraints	

SC	 PSO	
)0 <)+ <)123 <)143 <)523 	

<)543 <)/ <)6	
)$ <)78 <)79	

)0 <)+)/ <)6	
)123 <)143)523 <)543 	

)$ <)78 <)79	
Path	Constraints	 Failure	Constraints	

"#$ = 1	 "87 + 1! = "97	

rf
HA

Example

28

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2
Step	3:	computing	global	failure	schedule

CLAP[PLDI’13]:	Reason	dependencies	of	memory	accesses	

	
	
	
	

Read-Write	Constraints	
("#$ = 0	 ∧)$ <)+) ∨	

	("#$ = .#/ 	∧)/ <)$ ∧ ()+ <)/ ∨)$ <)+))	
Memory	Order	Constraints	

SC	 PSO	
)0 <)+ <)123 <)143 <)523 	

<)543 <)/ <)6	
)$ <)78 <)79	

)0 <)+)/ <)6	
)123 <)143)523 <)543 	

)$ <)78 <)79	
Path	Constraints	 Failure	Constraints	

"#$ = 1	 "87 + 1! = "97	

execution	should	
be	allowed	by	the	
memory	model

reordering
PSO	

Example

29

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2 Step	3:	computing	global	failure	schedule
CLAP[PLDI’13]:	Reason	dependencies	of	memory	accesses	

	
	
	
	

Read-Write	Constraints	
("#$ = 0	 ∧)$ <)+) ∨	

	("#$ = .#/ 	∧)/ <)$ ∧ ()+ <)/ ∨)$ <)+))	
Memory	Order	Constraints	

SC	 PSO	
)0 <)+ <)123 <)143 <)523 	

<)543 <)/ <)6	
)$ <)78 <)79	

)0 <)+)/ <)6	
)123 <)143)523 <)543 	

)$ <)78 <)79	
Path	Constraints	 Failure	Constraints	

"#$ = 1	 "87 + 1! = "97	

True
make	the	failure	
happen

Example

30

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2 Step	3:	computing	global	failure	schedule
CLAP[PLDI’13]:	Reason	dependencies	of	memory	accesses	

	
	
	
	

Read-Write	Constraints	
("#$ = 0	 ∧)$ <)+) ∨	

	("#$ = .#/ 	∧)/ <)$ ∧ ()+ <)/ ∨)$ <)+))	
Memory	Order	Constraints	

SC	 PSO	
)0 <)+ <)123 <)143 <)523 	

<)543 <)/ <)6	
)$ <)78 <)79	

)0 <)+)/ <)6	
)123 <)143)523 <)543 	

)$ <)78 <)79	
Path	Constraints	 Failure	Constraints	

"#$ = 1	 "87 + 1! = "97	Violation
make	the	failure	
happen

Example

31

T1
1:	T2.start()
2:	z=0
3:	x++
4:	y++
5:	z=1
6:	T2.join()

T2
7:	if	(z==1)
8:						assert(x+1==y)✗

Init:	x=1,	y=2 Step	3:	computing	global	failure	schedule

O1=1,	O2=2,	O3=3,	O5=4,	O7=5,	O8=6,
O4=7

Schedule:
1-2-3-5-7-8-4reordering

Core-based	constraints	reduction

32

the potential inter-thread memory dependencies; and
Fmo the memory model constraints. The formula con-
tains two types of variables: (1) V - the symbolic value
variables denoting the values returned by reads; and (2)
O - the order variables the order of each operation in the
final global schedule.

Path Constraints (Fpath). The path constraints are
constructed by a conjunction of all the path conditions
of each thread, with each path condition corresponds to
a branch decision by that path. The path conditions are
collected by recording the decision of each branch via
symbolic execution.
Bug Constraints (Fbug). The bug constraints enforce
the conditions for a bug to happen. A bug can be a
crash segfault, an assert violation, a buffer overflow, or
any program state-based property. To construct the bug
constraints, an expression over the symbol values for sat-
isfying the bug conditions is generated. For example, the
violation of an assertion exp can be modeled as !exp.
Synchronization Constraints (Fsync). The synchro-
nization constraints consist of two parts: partial order
constraints and locking constraints. The partial order
constraints model the order between different threads
caused by synchronizations fork/join/signal/wait. For
example, The begin event of a thread t should happen
after the fork event that starts t. A join event for a thread
t should happen after the last event of t. The locking con-
straints ensures that events guarded by the same lock are
mutually exclusive. It is constructed over the ordering
of the lock and unlock events. More specifically, for each
lock, all the lock/unlock pairs of events are extracted, and
the following constraints for each two pairs (l1, u1) and
(l2, u2) are constructed: Ou1 < Ol2 _Ou2 < Ol1 .
Memory Order Constraints (Fmo). The memory or-
der constraints enforce orders specified by the underly-
ing memory models. H3 currently supports three mem-
ory models: SC, TSO and PSO. For SC, all the events
by a single thread should happen in the program order.
TSO allows a read to complete before an earlier write to
a different memory location, but maintains a total order
over writes and operations accessing the same memory
location. PSO is similar to TSO, except that it allows
re-ordering writes on different memory locations.
Read-Write Constraints (Frw). Frw matches reads
and writes by encoding constraints to enforce the read
to return the value written by the write. Consider a read r
on a variable v and r is matched to a write w on the same
variable; we must construct the following constraints:
the order variables of all the other writes that r can be
matched to are either less than Ow or greater than Or.

As discussed in Section 2.1, Frw can be complicated
because there may exist many potential matches between
reads and writes. The size of Frw is cubic in the trace

Figure 5: Core-based constraint reduction.

size and its complexity is exponential in the trace size.
Nevertheless, in next subsection, we show that both the
size and complexity of Frw can be greatly reduced in H3.

3.4 Core-based Constraints Reduction
Besides the low runtime overhead, another key innova-
tion enabled by PT is that the order of executed events
on each core (either by the same thread or by different
threads) is determined, which can reduce the complex-
ity of Frw from exponential in the number of writes to
exponential in the core counts.

The key observation of this reduction is that the exe-
cuted memory accesses on each core decoded from PT
trace are already ordered, following the program order.
Once the order of a certain write in the global schedule is
determined, all the writes that happen before or after this
write, on the same core, should occur before or after this
write in the schedule correspondingly. This eliminates
a large number of otherwise necessary read-write con-
straints for capturing the potential inter-thread memory
dependencies.

Consider an example in Figure 5, which has four cores
with each executing four different writes. Suppose there
is a read R that can be potentially matched with all of
these writes, because each of them writes a different
value to the same shared variable read by R. Without
the partial order information of each core, we must in-
clude all writes and their orderings into the constraints.

6

• All	the	writes	write	a	
different	value	to	the	same	
memory	location

Match	R	to	the	write	W7

Core-based	constraints	reduction

33

Without	the	partial	order	on	each	core

W7-R

W1 W2 W3 W15 W16…

Core-based	constraints	reduction

34

Without	the	partial	order	on	each	core

W7-R

W1 W2 W3 W15 W16…

Core-based	constraints	reduction

35

Without	the	partial	order	on	each	core

W7-R

W1 W2 W3 W15 W16…

Core-based	constraints	reduction

36

Without	the	partial	order	on	each	core

W7-R

W1 W2 W3 W15 W16…

Core-based	constraints	reduction

37

Without	the	partial	order	on	each	core

W7-R

W1 W2 W3 W15 W16…

28.

Core-based	constraints	reduction

38

Knowing	the	partial	order	on	each	core

W7-R

W1 W2 W3 W4

…

W13 W14 W15 W16

…

Core-based	constraints	reduction

39

Knowing	the	partial	order	on	each	core

W7-R

W1 W2 W3 W4

…

W13 W14 W15 W16

…

Core-based	constraints	reduction

40

Knowing	the	partial	order	on	each	core

W7-R

W1 W2 W3 W4

…

5-

W13 W14 W15 W16

…

5

5

reduced	from	215

H3	Implementation

• Control-flow	tracing
• PT	decoding	library	&	Linux	Perf	tool

• Path	profiles	generation
• Python	scripts	to	extract	the	path	profiles	from	PT	trace

• Symbolic	trace	collecting
• Modified	KLEE[OSDI’08]	for	symbolic	execution	along	the	path	profiles

• Constraints	construction
• Modified	CLAP[PLDI’13]	to	implement	the	core-based	constraints	reduction
• Z3	for	solving	the	constraints

41

Evaluation

• Environment
• 4	core	3.5GHz	Intel	i7	6700HQ	Skylake with	16	GB	RAM	
• Ubuntu	14.04,	Linux	kernel	4.7

• Three	sets	of	experiments
• runtime	overhead	
• how	effective	to	reproduce	bugs
• how	effective	is	the	core-based	constraints	reduction

42

Benchmarks Table 2: Benchmarks.

Program LOC #Threads #SV #insns #branches #branches Ratio Symb.
(executed) (total) (app) app/total time

racey 192 4 3 1,229,632 78,117 77,994 99.8% 107s
pfscan 1026 3 13 1,287 237 43 18.1% 2.5s

aget-0.4.1 942 4 30 3,748 313 5 1.6% 117s
pbzip2-0.9.4 1942 5 18 1,844,445 272,453 5 0.0018% 8.7s

bbuf 371 5 11 1,235 257 3 1.2% 5.5s
sbuf 151 2 5 64,993 11,170 290 2.6% 1.6s

httpd-2.2.9 643K 10 22 366,665 63,653 12,916 20.3% 712s
httpd-2.0.48 643K 10 22 366,379 63,809 13,074 20.5% 698s
httpd-2.0.46 643K 10 22 366,271 63,794 12,874 20.2% 643s

then only need to disjunct the order constraints between
w and those writes from a different core.

5 Evaluation

Our evaluation of H3 focuses on answering two sets of
questions:

• How is the runtime performance of H3? How much
runtime improvement is achieved by H3 compared
to CLAP?

• How effective is H3 for reproducing real-world
Heisenbugs? How effective is the core-based con-
straint reduction technique?

5.1 Methodology

We evaluated H3 with a variety of multithreaded C/C++
programs collected from previous studies [18, 35, 6], in-
cluding nine popular real-world applications containing
known Heisenbugs. Table 2 summarizes these bench-
marks. pfscan is a parallel file scanner containing a
known bug; aget-0.4.1 is a parallel ftp/http download-
ing tool containing a deadlock; pbzip2-0.9.4 is a multi-
threaded implementation of bzip with a known order vi-
olation; bbuf is shared bounded buffer and sbuf is a C++
implementation of the JDK1.4 StringBuffer class; httpd-
2.2.9, httpd-2.0.48, httpd-2.0.46 are from the Apache
HTTP Server each containing a known concurrency bug;
We also included racey [6], a special benchmark with
intensive races that are designed for evaluating RnR sys-
tems. We use Apache Bench (ab) to test httpd, which
is set to handle 100 requests with a maximum of 10 re-
quests running concurrently.

We compared the runtime performance of H3 and
CLAP by measuring the time and space overhead caused
by PT tracing and software path-recording. We ran each
benchmark five times and calculated the average. All

experiments were performed on a 4 core 3.5GHz In-
tel i7 6700HQ Skylake CPU with 16 GB RAM running
Ubuntu 14.04.

We evaluated the effectiveness of H3 for reproducing
bugs by checking if H3 can generate a failure reproduc-
ing schedule and by measuring the time taken by offline
constraint solving. We set one hour timeout for Z3 to
solve the constraints.

For most benchmarks, the failures are difficult to man-
ifest because the erroneous schedule for triggering the
Heisenbugs is rare. Similar to CLAP, we inserted timing
delays (sleep functions) at key places in each benchmark
and executed it repeatedly until the failure is produced.
We also added the corresponding assertion to denote the
bug manifestation.

Benchmark Characteristics. Table 2 reports the ex-
ecution characteristics of the benchmarks. Columns 3
and 4 report the number of threads and shared variables,
respectively, contained in the execution. We also pro-
filed the total number of the executed instructions and
branches in the assembly code, and the branches from
the LLVM IR code, as reported in Columns 5-7. Col-
umn 8 reports the ratio of the number of the branches in
the instrumented application code versus the total num-
ber of branches (in both the application code and all the
external libraries). For most benchmarks (except racey),
the ratio is smaller than or around 20%. Column 9 re-
ports the time for constructing the symbolic trace for the
corresponding recorded execution of the benchmark.

5.2 Runtime Performance
Table 3 reports the performance comparison between H3
and CLAP. Column 2 reports the native execution time
of the benchmarks. Columns 3-4 report the execution
time with H3 and CLAP and their runtime overhead.
Column 5 reports the speedup of H3 over CLAP. Col-
umn 6 reports the percentage of branch instructions in
the execution. This number is proportional to the runtime

8

43
https://github.com/jieyu/concurrency-bugs
http://pages.cs.wisc.edu/~markhill/ racey.html

Runtime	overhead

186.60%

11%

12.10%

31.40%

20%

38.50%

34%

32.10%

36.20%
 7.50%

23.40%

9.40%

9.80%

13.80%

18.50%

7.50%

13.30%

12.90%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

racey pfscan aget pbzip2 bbuf sbuf httpd1 httpd2 httpd3

Ru
nt
im

e	
ov
er
he

ad

Comparison	between	H3	and	CLAP

CLAP H3

44

Runtime	overhead

186.60%

11%

12.10%

31.40%

20%

38.50%

34%

32.10%

36.20%

7.50%

23.40%

9.40%

9.80%

13.80%

18.50%

7.50%

13.30%

12.90%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

racey pfscan aget pbzip2 bbuf sbuf httpd1 httpd2 httpd3

Ru
nt
im

e	
ov
er
he

ad

Comparison	between	H3	and	CLAP

CLAP H3

45

CLAP:	64.3%			vs				H3:	12.9%
reduction:	31.3%	

Constraints	reduction	

46

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

bbuf sbuf pfscan pbzip2 racey1 racey2 racey3

#C
on

st
ra
in
ts

Core-based	constraints	reduction	by	H3	to	CLAP

CLAP H3

reduced	by	>	30%

reduced	by	>	90%

Bug	reproduction

47

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

bbuf sbuf pfscan pbzip2 racey1 racey2 racey3

#C
on

st
ra
in
ts

Core-based	constraints	reduction	by	H3	to	CLAP

CLAP H3

Reproduced	by	both

Only	reproduced	by	H3

Conclusion

H3:	Reproducing	Heisenbugs	based	on	control	flow	tracing	on	
commercial	hardware	(Intel	PT)	
• Runtime	Overhead
• PARSEC	3.0	:	~4.9%
• Real	application:			~12.9%		vs	CLAP[PLDI’13]	~64.3%

• Bug	reproduction
• reproduces	one	more	bug	than	CLAP	

48

Discussion

• Symbolic	execution	is	slow
• Eliminate	symbolic	execution:	use	hardware	watchpoints to	catch	values	and	
memory	locations

• Constraints	for	long	traces
• Use	checkpoints	and	periodic	global	synchronization

• Non-deterministic	program	inputs	(e.g.,	syscall results)
• Integrate	with	Mozilla	RR	[USENIX	ATC’17]	
• Key	insight:	use	H3	to	handle	schedules,	and	RR	to	handle	inputs

49

Thank	you

50

