
Log-Structured Non-Volatile
Main Memory
Qingda Hu*, Jinglei Ren, Anirudh Badam, and Thomas Moscibroda
Microsoft Research *Tsinghua University

Non-volatile memory is coming…

• Data storage

2

Read: ~50ns
Write: ~10GB/s

Read: ~10µs
Write: ~100MB/s

Read: ~100ns
Write: ~1GB/s

3D XPoint/Optane (2015 -)

PCM

Background: Impact of NVM

• Architecture:

• Data persistence as a bottleneck

 10+x application performance improvement

3

DRAM

SSD

DRAM NVM

Non-Volatile Main Memory (NVMM)

• Motivation

• Solution: Log-structured memory management for NVMM.

• Evaluation: 7x less memory waste; 90% higher write throughput.

Application

Library

Executive Summary

4

Application

Library

DRAM

SSD

NVMM

• Inefficient use of
memory space

• Inefficient support for
crash consistency

Outline

• Motivation

• Log-Structured NVMM

• Tree-Based Address Mapping

• Evaluation

5

Motivation I

• Inefficient use of memory space
• Reason: Traditional DRAM allocators incur high memory fragmentation.

• Explanation:

Internal fragmentation:

External fragmentation:

6

8B

16B

…

8B 8B 8B 8B 8B … 8B 8B

16B 16B … 16B

…

……

……

……

Waste 32B24B

32B Waste (32B) 32B 32B Waste (32B)

64B request

Motivation I

• Inefficient use of memory space (cont.)

• Fragmentation is a more severe issue for NVM!

7

process process

DRAM NVMM

processprocess processprocess

NVMM

Home

b

a

Motivation II

• Inefficient support for crash consistency
• Reason: Write-twice in log and home.

• Explanation: Redo logging for example.

8

transaction {
a += 1;
b -= 1;

}

Log

a’ b’

Outline

• Motivation

• Log-Structured NVMM

• Tree-Based Address Mapping

• Evaluation

9

Process (user space)

Log-Structured NVMM

• Library and architecture

10

Allocated Available

Memory management: An append-only log

Home addr. Log addr.

&a

&b …

Address mapping (DRAM)

a
translate(&a)

Application X NVM device

mmap()

Transaction

a a’

Log-Structured NVMM

• Low fragmentation
• For internal fragmentation: Compact append

• For external fragmentation: Log cleaning

11

Allocated Available

No internal fragmentation

Allocated Available

a

a a’

Log-Structured NVMM

• Efficient crash-consistent update
• No separate areas. Write only once.

• Header: size, checksum, etc.

12

Allocated Available

Home addr. Log addr.

&a

&b

Address mapping

b

transaction {
a += 1;
b -= 1;

}

a a’ b’

Outline

• Motivation

• Log-Structured NVMM

• Tree-Based Address Mapping

• Evaluation

13

Tree-Based Address Mapping

• Unique challenges to NVMM
• Pervasive and highly frequent memory accesses.

• Allocation granularity ≠ access granularity No O(1) lookup.

• Filesystems: hash(block number) as the index.

• Databases: hash(key or tuple ID) as the index.

• Main memory: hash(address)? That maps every address!

• Tree-based mapping
made performant.

14

0xABB4,
size=16

0xABC0,
size=24

...

? 0xABC8

Tree-Based Address Mapping

• Two-layer mapping

……
……

Tree for a small
partition (4KB)

Partition index: Ο(1)

……

Ο(log 𝑛)

15

• Improves transaction throughput by
39.6% on average.

Tree-Based Address Mapping

• Skip list

16

……

• A probabilistically balanced tree. No complex
balancing operations No locking for read-
only operations.

• Improves transaction throughput by
48.9% with four threads.

Tree-Based Address Mapping

• Group update

• Within each transaction, all writes are first buffered in DRAM.

• Writes with contiguous addresses are combined on transaction
commit.

• Improves transaction throughput by 42.3% on average.

17

Tree-Based Address Mapping

• Hot tree node cache
• A thread-local cache that references recently accessed nodes of the trees.

• A special hash table design: Deliberately high collision.

• Motivation: Addresses within a cached node are not hit due to random
distribution of their hash values.

• Solution: Use high-order bits of an address as its hash value.

• Improves transaction throughput by 30.1% on average.

18

? 0xABC08

0xABB*

0xABC*

0xABD*

0xABC00
(size=24)

Collison and found!

0xABCD0
(size=16)

Outline

• Motivation

• Log-Structured NVMM

• Tree-Based Address Mapping

• Evaluation

19

Evaluation

• Environment:
• 8-core Intel Xeon CPU E5-2637 v3 (3.5 GHz), 64 GB DRAM

• 64-bit Linux kernel version 4.2.3

• NVM emulation: write latency = max{500ns,
𝑤𝑟𝑖𝑡𝑒_𝑠𝑖𝑧𝑒

1GB/𝑠
}

• Part I: How effective are individual optimizations? – Already shown.

• Part II: How does LSNVMM perform against traditional systems?

• Part III: What are the inherent costs of the log-structured approach?

20

Evaluation

• Fragmentation: Compared to Hoard and jemalloc

• Workloads 1 ~ 3 collected from [S. Rumble, FAST ’14].

• Hoard/jemalloc produces 25.3%/35.0% fragmentation on average.

➢Log-structured NVM (LSNVMM) produces 4.5% fragmentation on average.

21

Evaluation

• Transaction throughput compared to Mnemosyne

• With 4 threads, log-structured NVMM performs 44.7% and 80.8% better than
Mnemosyne and Mnemosyne-Undo, respectively, on average.

22

Evaluation

• Cost of log cleaning

• The performance degradation due to log cleaning is 8% at 90% memory
utilization.

23

Conclusion

• Takeaway I: Applying the log-structured approach to NVMM can
largely reduce memory fragmentation and improve system
performance.

• Takeaway II: A tree-based address mapping mechanism can be made
efficient to serve log-structured NVMM.

• Thank you!

• Q & A

24

Backup

• Recovery time (10GB logs)

25

Backup

• DRAM footprint (1GB data)

26

