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Non-volatile memory is coming...

* Data storage
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Background: Impact of NVM

* Architecture: Non-Volatile Main Memory (NVMM)

=» 10+x application performance improvement



Executive Summary
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» NVMM

Inefficient use of
memory space

Inefficient support for
crash consistency

* Solution: Log-structured memory management for NVMM.

* Evaluation: 7x less memory waste; 90% higher write throughput.
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Motivation |

* Inefficient use of memory space
* Reason: Traditional DRAM allocators incur high memory fragmentation.
* Explanation:

8B — 8B 8B 8B 8B 8B 8B 8B g R

16B > 16B 16B 16B o T

Internal fragmentation: m 328

External fragmentation:
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Motivation |

* Inefficient use of memory space (cont.)
* Fragmentation is a more severe issue for NVM!
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Motivation ||

* Inefficient support for crash consistency
* Reason: Write-twice in log and home.
* Explanation: Redo logging for example.

_______________________ O

transaction {

§a+=1' i
éb—=1; @




Outline

* Motivation

* Log-Structured NVMM

* Tree-Based Address Mapping
* Evaluation



Log-Structured NVMM

* Library and architecture

Procgs_s_(u_sgr_slogc_el ______ Address mapping (DRAM)
rTransactlon 1: Home addr. Log addr.
: n translate(&a) | o &a ;
Loccooooooooooooa ] &b /

Allocated a’ Available

h Memory management: An append-only log -~~~
Te~<__ mmap() ___—--"""
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Log-Structured NVMM

* Low fragmentation
* For internal fragmentation: Compact append

Allocated a Available

No internal fragmentation

* For external fragmentation: Log cleaning
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Log-Structured NVMM

* Efficient crash-consistent update
* No separate areas. Write only once.

Address mapping

a =15 i Home addr. | Log addr.
b -=1; -
2 —
l
Allocated a’ | b’ Available

 Header: size, checksum, etc.
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Tree-Based Address Mapping

* Unique challenges to NVMM
* Pervasive and highly frequent memory accesses.
 Allocation granularity # access granularity = No O(1) lookup.
 Filesystems: hash(block number) as the index. @
e Databases: hash(key or tuple ID) as the index. @
* Main memory: hash(address)? That maps every address! @

* Tree-based mapping
made performant.

OxABB4,

? OXABC8 cize=16

OxABCO,

size=24
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Tree-Based Address Mapping

* Two-layer mapping

Partition index: O(1)

|
| Tree for a small

| partition (4KB)

O(logn) * Improves transaction throughput by
39.6% on average.
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Tree-Based Address Mapping

* Skip list

- NIL
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* A probabilistically balanced tree. No complex
balancing operations = No |locking for read-
only operations.

* Improves transaction throughput by
48.9% with four threads.

e e e . —— — — — — — — — — —
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Tree-Based Address Mapping

* Group update
* Within each transaction, all writes are first buffered in DRAM.

* Writes with contiguous addresses are combined on transaction
commit.

* Improves transaction throughput by 42.3% on average.
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Tree-Based Address Mapping

* Hot tree node cache
* A thread-local cache that references recently accessed nodes of the trees.
* A special hash table design: Deliberately high collision.

e Motivation: Addresses within a cached node are not hit due to random
distribution of their hash values.

* Solution: Use high-order bits of an address as its hash value.

OxABB*
OxABCOO OxABCDO
P k —
? OXxABCOS8 OxABC > (size=24) (Size:16)
k
OxABD Collison and found!

* Improves transaction throughput by 30.1% on average.
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Evaluation

* Environment:
e 8-core Intel Xeon CPU E5-2637 v3 (3.5 GHz), 64 GB DRAM

* 64-bit Linux kernel version 4.2.3
write_size

1GB/s }
* Part I: How effective are individual optimizations? — Already shown.
* Part Il: How does LSNVMM perform against traditional systems?

* Part lll: What are the inherent costs of the log-structured approach?

* NVM emulation: write latency = max{500ns,
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Evaluation

* Fragmentation: Compared to Hoard and jemalloc

100
< gp | LSNVMM == Hoard mm jemalloc |
= 60 |
g 40 | ﬂ |
2 20 t |
g 2 - B

Wi W2 W3

 Workloads 1 ~ 3 collected from [S. Rumble, FAST '14].
* Hoard/jemalloc produces 25.3%/35.0% fragmentation on average.
» Log-structured NVM (LSNVMM) produces 4.5% fragmentation on average.
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Evaluation

* Transaction throughput compared to Mnemosyne

388 I = | SNVMM

= LSNVMM-Clean
600 r m Mnemosyne-Redo -
500 | B Mnemosyne-Undo

400 r
300 |
200
100

0

Throughput (KTPS)

SPS HT RBTree B+Tree

* With 4 threads, log-structured NVMM performs 44.7% and 80.8% better than
Mnemosyne and Mnemosyne-Undo, respectively, on average.
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Evaluation

e Cost of log cleaning

» 200 30
o190t Tt ey o5 O
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% memory utilization (home space)

Transaction-Throughput —=—
Clean-Throughput

* The performance degradation due to log cleaning is 8% at 90% memory
utilization.
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Conclusion

* Takeaway |I: Applying the log-structured approach to NVMM can
largely reduce memory fragmentation and improve system
performance.

* Takeaway Il: A tree-based address mapping mechanism can be made
efficient to serve log-structured NVMM.

* Thank you!
*Q&A
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Backup

* Recovery time (10GB logs)
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Backup

 DRAM footprint (1GB data)

DRAM footprint (MB)
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