
GPU Taint Tracking

Presented by Eddy Z. Zhang

July 12, 2017

Rutgers University

Ari B. Hayes 
Rutgers University

Lingda Li  
Brookhaven National Lab

Mohammad Hedayati
University of Rochester

Jiahuan He
Rutgers University

Eddy Z. Zhang
Rutgers University

Kai Shen
Google

Vulnerability of GPUs1

Sensitive Data on the GPU

• Many GPU applications use sensitive data:

• Machine learning, data encryption, computer vision.

Face Recognition 
Input

Sensitive Data on the GPU

• Many GPU applications use sensitive data:

• Machine learning, data encryption, computer vision.

Face Recognition 
Input

Face Recognition 
Leaked Features

Memory Protection

• Virtual Memory

• Address Space Layout Randomization

• Process Isolation

• Page Protection

• Bounds Checking

• Memory Erasure

None of these are fully available on the GPU!

Memory Protection

• Without address space layout randomization, an attacker can
predict where GPU data is stored. [Patterson, ISU thesis 2013]

• Without process isolation, an attacker can peek into another
GPU process, steal encryption keys. [Pietro+, TECS 2016]

• Without page protection and bounds checking, an attacker can
force a GPU program to write to non-permissive memory
regions. [Vasiliadis+, CCS 2014]

• Without a reliable way to control or erase GPU thread-private
memories, a user cannot keep their data contained. [Pietro+,
TECS 2016]

GPU Memory

GPU

RAM

Global
Memory

Local
Memory

L2 Cache

SM

Registers
Shared Mem

L1 Cache

SM

Registers
Shared Mem

L1 Cache

CPU Memory

Global memory

GPU

RAM

Global
Memory

Local
Memory

L2 Cache

SM

Registers
Shared Mem

L1 Cache

SM

Registers
Shared Mem

L1 Cache

• Easily accessible to an attacker.

Local Memory

GPU

RAM

Global
Memory

Local
Memory

L2 Cache

SM

Registers
Shared Mem

L1 Cache

SM

Registers
Shared Mem

L1 Cache

• Used for spilled registers; inaccessible to programmer

• Accessible by attacker through global memory

Shared Memory & L1 Cache

GPU

RAM

Global
Memory

Local
Memory

L2 Cache

SM

Registers
Shared Mem

L1 Cache

SM

Registers
Shared Mem

L1 Cache

• Shared mem is accessible to attacker after function ends

• On some GPUs, L1 cache can leak into shared memory

Register File

GPU

RAM

Global
Memory

Local
Memory

L2 Cache

SM

Registers
Shared Mem

L1 Cache

SM

Registers
Shared Mem

L1 Cache

• Designed to be inaccessible to programmer.

• Accessible to attackers after GPU function finishes.

Dynamic Taint Analysis

• Common technique for monitoring sensitive data

• Marks (taints) sensitive data and tracks taint at runtime

• Has extensive CPU work with various implementations:

• Compile-time instrumentation [Lin+, ICC 2010]

• Dynamic instrumentation [Kemerlis+, VEE 2012]

• Emulation [Bosman+, RAID 2011]

• Virtual machine [Enck+, TOCS 2014]

• Not previously attempted for GPU programs

Challenges of GPU Taint Tracking

• Must track several memory types

• Dynamic instrumentation infeasible

• Lack of support from OS or driver;

• Cannot intercept/modify instructions on the fly.

• Emulation is unappealing

• Up to 1000x slowdown [Farooqui+, GPGPU 2011]

• Virtual machines are unhelpful

• Cannot monitor data in GPU

Our Contributions

• First GPU dynamic taint tracking system.

• Compile-time binary instrumentation

• Dynamic tracking

• GPU-specific optimizations to minimize overhead.

• Filter out unnecessary tracking instructions

• Improves tracking performance by 5 to 20 times

Taint Tracking2

Taint Tracking

• Maintains taint map; one taint bit for each memory location.

• Monitors instructions & operands, propagating taint values.

void foo() {
 b = a;
 d = b + c;
}

void foo_taint_tracking() {
 taint(b) = taint(a);
 taint(d) = taint(b) || taint(c);
}

Original code Taintedness propogation

Our Taint Tracking System

Binary 
Analysis

Two Pass Analysis

Forward
Pass

Backward
Pass

Tracking
Filter

Binary 
Instrumentation

Analysis3

Our Taint Tracking System

Binary 
Analysis

Two Pass Analysis

Forward
Pass

Backward
Pass

Tracking
Filter

Binary 
Instrumentation

GPU Program
Basic Blocks

&
CFG

GPU Behavior

• We observe that not everything needs to be tracked.

• Some GPU data is untaintable or cannot spread taint.

• Thread ID

• Grid Size

• Constant memory

• Loop Iterators

• Immediate values

• These operands and instructions can be identified by analyzing
the basic blocks and control flow graph.

Our Taint Tracking System

Binary 
Analysis

Two Pass Analysis

Forward
Pass

Backward
Pass

Tracking
Filter

Binary 
Instrumentation

GPU Program
Basic Blocks

&
CFG

Taintability
&

Reachability

Two Pass Analysis

• Backward pass

• Identifies & marks taint sinks

• Propagates markings backward

• Forward pass

• Identify & marks potential taint sources

• Propagates markings forward

• Two-pass analysis

• Combine markings from both passes

Backward Pass

Block4:
 R0 = R1 + R2;
 R1 = R1 + R3;
 R0 = [R1];
 R2 = R3 * R2;
 [R1] = R2;
 R0 = R1 * R3;
 BRA block5;

reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R3}
reachable = {R0, R3}

Backward Pass

Block4:
 R0 = R1 + R2;
 R1 = R1 + R3;
 R0 = [R1];
 R2 = R3 * R2;
 [R1] = R2;
 R0 = R1 * R3;
 BRA block5;

reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R3}
reachable = {R0, R3}

Backward Pass

Block4:
 R0 = R1 + R2;
 R1 = R1 + R3;
 R0 = [R1];
 R2 = R3 * R2;
 [R1] = R2;
 R0 = R1 * R3;
 BRA block5;

reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R3}
reachable = {R0, R3}

Backward Pass

Block4:
 R0 = R1 + R2;
 R1 = R1 + R3;
 R0 = [R1];
 R2 = R3 * R2;
 [R1] = R2;
 R0 = R1 * R3;
 BRA block5;

reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R2, R3}
reachable = {R1, R3}
reachable = {R0, R3}

Forward Pass

Block4:
 R0 = R1 + R2;
 R1 = R1 + R3;
 R0 = [R1];
 R2 = R3 * R2;
 [R1] = R2;
 R0 = R1 * R3;
 BRA block5;

taintable = {R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}

Forward Pass

Block4:
 R0 = R1 + R2;
 R1 = R1 + R3;
 R0 = [R1];
 R2 = R3 * R2;
 [R1] = R2;
 R0 = R1 * R3;
 BRA block5;

taintable = {R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}

Forward Pass

Block4:
 R0 = R1 + R2;
 R1 = R1 + R3;
 R0 = [R1];
 R2 = R3 * R2;
 [R1] = R2;
 R0 = R1 * R3;
 BRA block5;

taintable = {R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}

Forward Pass

Block4:
 R0 = R1 + R2;
 R1 = R1 + R3;
 R0 = [R1];
 R2 = R3 * R2;
 [R1] = R2;
 R0 = R1 * R3;
 BRA block5;

taintable = {R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}
taintable = {R0, R1}

Instrumentation4

Our Taint Tracking System

Binary 
Analysis

Two Pass Analysis

Forward
Pass

Backward
Pass

Tracking
Filter

Binary 
Instrumentation

GPU Program
Basic Blocks

&
CFG

Taintability
&

Reachability

New Assembly

Naive Tracking Code

 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Block4:

Naive Tracking Code

 t(R0) = t(R1) | t(R2)

 t(R1) = t(R1) | t(R3)

 t(R0) = t([R1])

 t(R2) = t(R3) | t(R2)

 t([R1]) = t(R1) | t(R2)

 t(R0) = t(R1) | t(R3)

 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Block4:

Naive Tracking Code

 t(R0) = t(R1) | t(R2)

 t(R1) = t(R1) | t(R3)

 t(R0) = t([R1])

 t(R2) = t(R3) | t(R2)

 t([R1]) = t(R1) | t(R2)

 t(R0) = t(R1) | t(R3)

Block4:
 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Naive Tracking Code

 t(R0) = t(R1) | t(R2)

 t(R1) = t(R1) | t(R3)

 t(R0) = t([R1])

 t(R2) = t(R3) | t(R2)

 t([R1]) = t(R1) | t(R2)

 t(R0) = t(R1) | t(R3)

Block4:
 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Naive Tracking Code

 t(R0) = t(R1) | t(R2)

 t(R1) = t(R1) | t(R3)

 t(R0) = t([R1])

 t(R2) = t(R3) | t(R2)

 t([R1]) = t(R1) | t(R2)

 t(R0) = t(R1) | t(R3)

Block4:
 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Naive Tracking Code

 t(R0) = t(R1) | t(R2)

 t(R1) = t(R1) | t(R3)

 t(R0) = t([R1])

 t(R2) = t(R3) | t(R2)

 t([R1]) = t(R1) | t(R2)

 t(R0) = t(R1) | t(R3)

Block4:
 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Filtered Tracking Code

 t(R0) = t(R1) | t(R2)

 t(R1) = t(R1) | t(R3)

 t(R0) = t([R1])

 t(R2) = t(R3) | t(R2)

 t([R1]) = t(R1) | t(R2)

 t(R0) = t(R1) | t(R3)

 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Block4:

Filtered Tracking Code

 t(R0) = t(R1) | t(R2)

 t(R1) = t(R1) | t(R3)

 t(R0) = t([R1])

 t(R2) = t(R3) | t(R2)

 t([R1]) = t(R1) | t(R2)

 t(R0) = t(R1) | t(R3)

 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Block4:

Filtered Tracking Code

 t(R0) = t(R1) | t(R2)

 t(R1) = t(R1) | t(R3)

 t(R0) = t([R1])

 t(R2) = t(R3) | t(R2)

 t([R1]) = t(R1) | t(R2)

 t(R0) = t(R1) | t(R3)

Block4:
 R0 = R1 + R2;

 R1 = R1 + R3;

 R0 = [R1];

 R2 = R3 * R2;

 [R1] = R2;

 R0 = R1 * R3;

 BRA block5;

Our Taint Tracking System

Binary 
Analysis

Two Pass Analysis

Forward
Pass

Backward
Pass

Tracking
Filter

Binary 
Instrumentation

GPU Program
Basic Blocks

&
CFG

Taintability
&

Reachability

New AssemblyGPU Program

Basic Blocks

Efficient Taint Map

• Taint map is typically kept completely in RAM.

• Off-chip memory is very slow on the GPU.

• Better to keep part of the taint map in on-chip memory.

• We keep register taintedness in the register file.

• Registers are 32 bits, so every 32 tracked registers
adds only one register of overhead.

Evaluation5

Methodology

• Binary code is converted to assembly with cuobjdump.

• Our compiler Orion analyzes assembly and adds taint
tracking (and erasure) code to assembly

• New assembly is converted into binary based on asfermi
& MaxAs.

• Taint map allocation can be done indirectly through CPU,
using LD_PRELOAD to intercept cudaMalloc calls.

• Evaluated on NVIDIA GTX 745, compute capability 5.0.

Benchmarks

Benchmark Domain Source

im2col Machine Learning Caffe

ReLUForward Machine Learning Caffe

MaxPoolForward Machine Learning Caffe

FDTD3d Numerical Analysis CUDA SDK

BlackScholes Financial Analysis CUDA SDK

SSLShader Cryptography [Jang+, NSDI 2011]

needle Bioinformatics Rodinia

Results - Runtime with Tracking

Results - Runtime with Tracking

Geomean is 24.41X

Results - Runtime with Tracking

Geomean is 5.19X

Results - Runtime with Tracking

Geomean is 8.96X

Results - Runtime with Tracking

Geomean is 17.84X

Results - Runtime with Tracking

Geomean is 7.38X

Results - Runtime with Tracking

Geomean is 2.80X

Results - Code Size with Tracking

Memory Erasure

• After adding tracking code, we can also add erasure code.

• On-chip memory can only be reliably erased via binary
instrumentation.

• We have GPU threads clear their own registers and
shared memory, as well as thread-private data in local
memory.

• The final taint map identifies global memory with
sensitive data, so that it can be erased.

On-Chip & Thread-Private Erasure

Benchmark Memories Slowdown

im2col Reg 0.26%

ReLUForward Reg 0.33%

MaxPoolForward Reg 0.59%

FDTD3d Reg, Shared 5.10%

BlackScholes Reg 0.40%

SSLShader Reg, Local 0.41%

needle Reg, Shared 13.05%

Naive erasure is up to nine times slower!

Conclusion7

Conclusion

• We present the first GPU dynamic taint tracking system.

• Two pass filtering eliminates tracking code.

• GPU-specific optimizations to minimize overhead.

• Clears memory the programmer cannot.

• Improves tracking performance by 5X to 20X.

Questions?7

