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Vulnerability of GPUs1



Sensitive Data on the GPU

• Many GPU applications use sensitive data:

• Machine learning, data encryption, computer vision.
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Memory Protection

• Virtual Memory

• Address Space Layout Randomization

• Process Isolation

• Page Protection

• Bounds Checking

• Memory Erasure

None of these are fully available on the GPU!



Memory Protection

• Without address space layout randomization, an attacker can 
predict where GPU data is stored. [Patterson, ISU thesis 2013]

• Without process isolation, an attacker can peek into another 
GPU process, steal encryption keys. [Pietro+, TECS 2016]

• Without page protection and bounds checking, an attacker can 
force a GPU program to write to non-permissive memory 
regions. [Vasiliadis+, CCS 2014]

• Without a reliable way to control or erase GPU thread-private 
memories, a user cannot keep their data contained. [Pietro+, 
TECS 2016]
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Shared Memory & L1 Cache
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Dynamic Taint Analysis

• Common technique for monitoring sensitive data

• Marks (taints) sensitive data and tracks taint at runtime

• Has extensive CPU work with various implementations:

• Compile-time instrumentation [Lin+, ICC 2010]

• Dynamic instrumentation [Kemerlis+, VEE 2012]

• Emulation [Bosman+, RAID 2011]

• Virtual machine [Enck+, TOCS 2014]

• Not previously attempted for GPU programs



Challenges of GPU Taint Tracking

• Must track several memory types

• Dynamic instrumentation infeasible

• Lack of support from OS or driver;

• Cannot intercept/modify instructions on the fly.

• Emulation is unappealing

• Up to 1000x slowdown [Farooqui+, GPGPU 2011]

• Virtual machines are unhelpful

• Cannot monitor data in GPU



Our Contributions

• First GPU dynamic taint tracking system.

• Compile-time binary instrumentation

• Dynamic tracking

• GPU-specific optimizations to minimize overhead.

• Filter out unnecessary tracking instructions

• Improves tracking performance by 5 to 20 times 
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Taint Tracking

• Maintains taint map; one taint bit for each memory location.

• Monitors instructions & operands, propagating taint values.

void foo() {
   b = a;
   d = b + c;
}

void foo_taint_tracking() {
   taint(b) = taint(a);
   taint(d) = taint(b) || taint(c);
}

Original code Taintedness propogation
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GPU Behavior

• We observe that not everything needs to be tracked.

• Some GPU data is untaintable or cannot spread taint.

• Thread ID

• Grid Size

• Constant memory

• Loop Iterators

• Immediate values

• These operands and instructions can be identified by analyzing 
the basic blocks and control flow graph.
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Two Pass Analysis

• Backward pass

• Identifies & marks taint sinks

• Propagates markings backward

• Forward pass

• Identify & marks potential taint sources

• Propagates markings forward

• Two-pass analysis

• Combine markings from both passes
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Efficient Taint Map

• Taint map is typically kept completely in RAM.

• Off-chip memory is very slow on the GPU.

• Better to keep part of the taint map in on-chip memory.

• We keep register taintedness in the register file.

• Registers are 32 bits, so every 32 tracked registers 
adds only one register of overhead.
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Methodology

• Binary code is converted to assembly with cuobjdump.

• Our compiler Orion analyzes assembly and adds taint 
tracking (and erasure) code to assembly

• New assembly is converted into binary based on asfermi 
& MaxAs.

• Taint map allocation can be done indirectly through CPU, 
using LD_PRELOAD to intercept cudaMalloc calls.

• Evaluated on NVIDIA GTX 745, compute capability 5.0.



Benchmarks

Benchmark Domain Source

im2col Machine Learning Caffe

ReLUForward Machine Learning Caffe

MaxPoolForward Machine Learning Caffe

FDTD3d Numerical Analysis CUDA SDK

BlackScholes Financial Analysis CUDA SDK

SSLShader Cryptography [Jang+, NSDI 2011]

needle Bioinformatics Rodinia



Results - Runtime with Tracking



Results - Runtime with Tracking

Geomean is 24.41X



Results - Runtime with Tracking

Geomean is 5.19X



Results - Runtime with Tracking
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Results - Runtime with Tracking

Geomean is 17.84X



Results - Runtime with Tracking

Geomean is 7.38X



Results - Runtime with Tracking

Geomean is 2.80X



Results - Code Size with Tracking



Memory Erasure

• After adding tracking code, we can also add erasure code.

• On-chip memory can only be reliably erased via binary 
instrumentation.

• We have GPU threads clear their own registers and 
shared memory, as well as thread-private data in local 
memory.

• The final taint map identifies global memory with 
sensitive data, so that it can be erased.



On-Chip & Thread-Private Erasure

Benchmark Memories Slowdown

im2col Reg 0.26%

ReLUForward Reg 0.33%

MaxPoolForward Reg 0.59%

FDTD3d Reg, Shared 5.10%

BlackScholes Reg 0.40%

SSLShader Reg, Local 0.41%

needle Reg, Shared 13.05%

Naive erasure is up to nine times slower!
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Conclusion

• We present the first GPU dynamic taint tracking system.

• Two pass filtering eliminates tracking code.

• GPU-specific optimizations to minimize overhead.

• Clears memory the programmer cannot.

• Improves tracking performance by 5X to 20X.
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