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Controlled Channels 1

OS still manages shielded applications

Control over page tables

... and thus over page faults

Retrieved

outlines of images

text from font rendering

text from spell checking

Data dependent control flow

// @ Page 1
vo id p r o c e s s D a t a ( bool s e c r e t ) {

i f ( s e c r e t ) {
s e c r e t D a t a ( ) ; // @ Page 2

} e l s e {
p u b l i c D a t a ( ) ; // @ Page 3

}
}

Page faults serve as de facto breakpoints
and reveal memory access patterns

1Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. ”Controlled-channel attacks: Deterministic
side channels for untrusted operating systems.”, Oakland 2015
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Results

strlen function

99.98 % of string lengths detected correctly

Can effectively single-step through the application

Works where Page-Fault Channel fails

Can replace page-fault based break points

Requires fine-tuning for correct timing
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Prime & Probe

But we are not an unprivileged attacker, but the OS

Noise reduction by

Targeted Breakpoints

Preventing other applications from being scheduled

Turn off prefetching
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Evaluation

Victims

libjpeg: image decoding

VC3: map-reduce framework for SGX
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Attack Overview

Why is attacking VC3 hard

Only attack framework; not user’s secret mappers and reducers

Framework is small (only 13 code pages)

Framework does not know application semantics

Can this leak information?

Map/Reduce spec

”The MapReduce library groups together all intermediate values associated with the
same intermediate key I and passes them to the Reduce function” 2

VC3 implements grouping using a hash table

2Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce: simplified data processing on large clusters.”
Communications of the ACM 51.1 (2008): 107-103. [Page 2]
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