Introduction	System Model	Attack Tools	Conclusion

High Resolution Side Channels for Untrusted Operating Systems

*Marcus Hähnel*¹ Marcus Peinado² Weidong Cui²

 $^{1}\mathsf{TU}$ Dresden

²Microsoft Research

2017-07-13

Introduction ●0000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Reasons to o	distrust the OS			

Introduction ••••••	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Reasons to di	strust the OS			

 Introduction
 System Model
 Attack Tools
 Evaluation
 Conclusion

 •ooooo
 Reasons to distrust the OS
 Conclusion
 Conclusion

Large code bases, security bugs

Large code bases, security bugs

Introduction 0●000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Shielding Sy	/stems			

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Shielding	g Systems			
	noving the OS from the trusted computing base	OS	Firefox SQL Server	

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Shielding Sv	/stems			

Removing the OS from the trusted computing base

Hypervisor-based

- Overshadow [ASPLOS'08]
- InkTag [ASPLOS'13]

Introduction ○●○○○	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Shielding Syste	ems			

Removing the OS from the trusted computing base

Hypervisor-based

- Overshadow [ASPLOS'08]
- InkTag [ASPLOS'13]

Intel SGX-based

- Haven [OSDI'14]
- VC3 [Oakland'15]
- SCONE [OSDI'16]
- Glamdring [ATC'17]

Introduction ○●○○○	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Shielding S	vstems			

Removing the OS from the trusted computing base

Hypervisor-based

- Overshadow [ASPLOS'08]
- InkTag [ASPLOS'13]

Intel SGX-based

- Haven [OSDI'14]
- VC3 [Oakland'15]
- SCONE [OSDI'16]
- Glamdring [ATC'17]

Protected Application Memory Pages

Introduction ○○●○○	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Attack position				

But how well do these solutions protect the application?

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Controlled	Channels ¹			

- Control over page tables
- ... and thus over page faults 😇

¹Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems.", Oakland 2015

Introduction	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Controlled	Channels ¹			

- Control over page tables
- ... and thus over page faults

Data dependent control flow

```
// @ Page 1
void processData(bool secret) {
    if (secret) {
        secretData(); // @ Page 2
    } else {
        publicData(); // @ Page 3
    }
}
```

¹Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems.", Oakland 2015

- Control over page tables
- ... and thus over page faults

Data dependent control flow

```
// @ Page 1
void processData(bool secret) {
    if (secret) {
        secretData(); // @ Page 2
    } else {
        publicData(); // @ Page 3
    }
}
```

Page faults serve as de facto *breakpoints* and reveal memory access patterns

¹Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems.", Oakland 2015

Introduction ○○○●○	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Controlled (Channels ¹			

- Control over page tables
- ... and thus over page faults

Retrieved

- outlines of images
- text from font rendering
- text from spell checking

Data dependent control flow

```
// @ Page 1
void processData(bool secret) {
    if (secret) {
        secretData(); // @ Page 2
    } else {
        publicData(); // @ Page 3
    }
}
```

Page faults serve as de facto *breakpoints* and reveal memory access patterns

¹Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems.", Oakland 2015

Introduction ○○○○●	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Contributions				

• limited to page granular memory observation

Introduction ○○○○●	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Contributions				

- limited to page granular memory observation
- requires page toggling

Introduction	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Contributions				

- limited to page granular memory observation
- requires page toggling
- is only means to set breakpoint (may be detectable)

Introduction ○○○○●	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Contributions				

- limited to page granular memory observation
- requires page toggling
- is only means to set breakpoint (may be detectable)

Table 2-4. Bit Vecto	r Layout of MISCSELECT Fi	eld of Extended Information
----------------------	---------------------------	-----------------------------

Field	Bit Position	Description
EXINFO	0	Report page fault and general protection exception info inside an enclave
Reserved	31:1	Reserved (0).

Introduction ○○○○●	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Contributions				

• limited to page granular memory observation

 \Rightarrow Increase spatial resolution

• requires page toggling

 \Rightarrow Improve temporal resolution

• is only means to set breakpoint (may be detectable)

Table 2-4. Bit Vector Layout of MISCSELECT Field of Extended Information

Field	Bit Position	Description
EXINFO	0	Report page fault and general protection exception info inside an enclave
Reserved	31:1	Reserved (0).

Introduction ○○○○●	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Contributions				

• limited to page granular memory observation

 \Rightarrow Increase spatial resolution

• requires page toggling

 \Rightarrow Improve temporal resolution

• is only means to set breakpoint (may be detectable)

Show more code than previously thought is vulnerable

Field	Bit Position	Description
EXINFO	0	Report page fault and general protection exception info inside an enclave
Reserved	31:1	Reserved (0).

Table 2-4. Bit Vector Layout of MISCSELECT Field of Extended Information

Introduction ○○○○●	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Contributions				

• limited to page granular memory observation

 \Rightarrow Increase spatial resolution

• requires page toggling

 \Rightarrow Improve temporal resolution

- is only means to set breakpoint (may be detectable)
 - \Rightarrow Other ways to step through the application

Show more code than previously thought is vulnerable

Field	Bit Position	Description
EXINFO	0	Report page fault and general protection exception info inside an enclave
Reserved	31:1	Reserved (0).

Table 2-4. Bit Vector Layout of MISCSELECT Field of Extended Information

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Svstem Model				

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
System Model				

Working shielding system

... protects integrity and security of applications' memory against direct access

Protected Application

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
System Model				

Working shielding system

... protects integrity and security of applications' memory against direct access

Commodity OS

... is still responsible for:

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
System Model				

Working shielding system

... protects integrity and security of applications' memory against direct access

Commodity OS

- ... is still responsible for:
 - Memory management

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
System Model				

Working shielding system

... protects integrity and security of applications' memory against direct access

Commodity OS

- ... is still responsible for:
 - Memory management
 - Scheduling

Protected Application

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
System Model				

Working shielding system

... protects integrity and security of applications' memory against direct access

Commodity OS

- ... is still responsible for:
 - Memory management
 - Scheduling
 - Hardware Configuration

Protected Application

Hypervisor or SGX CPU

Introduction	System Model	Attack Tools	Conclusion

New Attack Tools

Introduction 00000	System Model	Attack Tools	Evaluation 0000000	Conclusion
Timer-based A	Attacks			

The OS has control over scheduling ... and thus over timers $\ensuremath{\overline{\mathbb{O}}}$

Introduction 00000	System Model	Attack Tools ●00000	Evaluation 0000000	Conclusion
Timer-base	d Attacks			

The OS has control over scheduling ... and thus over timers $\overline{\ensuremath{\mathbb{C}}}$

Challenges

• 25 MHz LAPIC Timer vs. 4 GHz CPU clock

Introduction 00000	System Model	Attack Tools ●00000	Evaluation 0000000	Conclusion
Timer-base	d Attacks			

The OS has control over scheduling ... and thus over timers $\overline{\ensuremath{\mathbb{C}}}$

Challenges

- 25 MHz LAPIC Timer vs. 4 GHz CPU clock
- No page fault address

Introduction 00000	System Model	Attack Tools •00000	Evaluation 0000000	Conclusion
Timer-base	d Attacks			

The OS has control over scheduling ... and thus over timers $\ensuremath{\overline{\mathbb{O}}}$

Challenges

- 25 MHz LAPIC Timer vs. 4 GHz CPU clock
- No page fault address

X D	Ignored	Rsvd.	Address of 4KB page frame	lgn.	GADACW//1 TDACW//1
--------	---------	-------	---------------------------	------	-----------------------

Figure: Accessed & Dirty bits in PTE

Introduction 00000	System Model	Attack Tools 0●0000	Evaluation 0000000	Conclusion
Example				

```
size_t strlen(const char* str) {
    size_t len = 0;
    while (*str != '\0') {
        str++;
        len++;
    }
    return len;
}
```

```
const char* s = "The";
int l = strlen(s);
```

X D	lgnored	Rsvd.	Address of 4KB page frame	Ign. GADACW///1
--------	---------	-------	---------------------------	-----------------

Attacker count

0

*str

'T'

Introduction 00000	System Model	Attack Tools 0●0000	Evaluation 0000000	Conclusion
Example				

<pre>size_t strlen(const char* str) { size_t len = 0;</pre>			
<pre>while (*str != '\0') { str++;</pre>		*str	Attacker count
len++; } return len; }	Ö	'Т'	0
const char* s = "The";			

CONS	ι	CII	ar *	5		rne	,
int	I	=	strl	e n	(s)	;	

X D	Ignored	Rsvd.	Address of 4KB page frame	Ign. GADACW///1 TACY//1
--------	---------	-------	---------------------------	----------------------------
Introduction 00000	System Model	Attack Tools 0●0000	Evaluation 0000000	Conclusion
-----------------------	--------------	------------------------	-----------------------	------------
Example				

```
size_t strlen(const char* str) {
    size_t len = 0;
    while (* str != '\0') {
        str++;
        len++;
    }
    return len;
}
const char* s = "The";
```

X D	Ignored	Rsvd.	Address of 4KB page frame	Ign. GADACW// 1 TDACW// 1

int l = strlen(s);

Introduction 00000	System Model	Attack Tools ○●○○○○	Evaluation 0000000	Conclusion
Example				

X D	Ignored	Rsvd.	Address of 4KB page frame	Ign. G ADA CW / / 1 T ADA CW / / 1
--------	---------	-------	---------------------------	---------------------------------------

Introduction 00000	System Model	Attack Tools 0●0000	Evaluation 0000000	Conclusion
Example				

```
size_t strlen(const char* str) {
    size_t len = 0;
    while (* str != '\0') {
        str++;
        len++;
    }
    return len;
}
const char* s = "The";
```

int l = strlen(s);

X D	lgnored	Rsvd.	Address of 4KB page frame	Ign. GADACW//1
--------	---------	-------	---------------------------	----------------

Introduction 00000	System Model	Attack Tools 0●0000	Evaluation 0000000	Conclusion
Example				

```
size_t strlen(const char* str) {
    size_t len = 0;
    while (* str != '\0') {
        str++;
        len++;
    }
    return len;
}
const char* s = "The";
```

int l = strlen(s);

X D	lgnored	Rsvd.	Address of 4KB page frame	Ign. GADACW// 1 TDACW// 1 DTSW
--------	---------	-------	---------------------------	--

Introduction 00000	System Model	Attack Tools 0●0000	Evaluation 0000000	Conclusion
Example				

int	1	=	strlen(s);	
		_	strich (s),	

X D	lgnored	Rsvd.	Address of 4KB page frame	Ign. G A DA CW / / 1 T D S W
--------	---------	-------	---------------------------	---------------------------------

Introduction 00000	System Model	Attack Tools 0●0000	Evaluation 0000000	Conclusion
Example				

```
size_t strlen(const char* str) {
    size_t len = 0;
    while (*str != ' \setminus 0') {
                                                                    Attacker count
                                                             *str
         str++:
         len++;
                                                              'T'
                                                                           1
                                                              'h'
                                                                          2
    return len;
                                                                          3
                                                              'e'
}
                                                              '\0'
                                                                          4
```

X D	lgnored	Rsvd.	Address of 4KB page frame	Ign. GADACW//1
--------	---------	-------	---------------------------	----------------

Introduction 00000	System Model	Attack Tools 00●000	Evaluation 0000000	Conclusion
Results				

STRLEN function

- $\bullet~99.98\,\%$ of string lengths detected correctly
- Can effectively single-step through the application
- Works where Page-Fault Channel fails
- Can replace page-fault based break points
- Requires fine-tuning for correct timing

Introduction 00000	System Model	Attack Tools ○○○●○○	Evaluation 0000000	Conclusion
Prime & Probe				

- Unprivileged attacker and victim on same machine share cache
- Attacker can indirectly observe victims memory access

Introduction 00000	System Model	Attack Tools ○○○●○○	Evaluation 0000000	Conclusion
Prime & Probe				

- Unprivileged attacker and victim on same machine share cache
- Attacker can indirectly observe victims memory access

Introduction 00000	System Model	Attack Tools	Evaluation 0000000	Conclusion
Prime & Probe				

- Unprivileged attacker and victim on same machine share cache
- Attacker can indirectly observe victims memory access

Introduction 00000	System Model	Attack Tools	Evaluation 0000000	Conclusion
Prime & Probe				

- Unprivileged attacker and victim on same machine share cache
- Attacker can indirectly observe victims memory access

Introduction 00000	System Model	Attack Tools	Evaluation 0000000	Conclusion
Prime & Probe				

- Unprivileged attacker and victim on same machine share cache
- Attacker can indirectly observe victims memory access

Introduction 00000	System Model	Attack Tools ○○○●○○	Evaluation 0000000	Conclusion
Prime & Probe				

- Unprivileged attacker and victim on same machine share cache
- Attacker can indirectly observe victims memory access

Introduction 00000	System Model	Attack Tools	Evaluation 0000000	Conclusion
Prime & Probe				

But we are not an unprivileged attacker, but the OS

Noise reduction by

- Targeted Breakpoints
- Preventing other applications from being scheduled
- Turn off prefetching

Introduction 00000	System Model	Attack Tools	Evaluation 0000000	Conclusion
Results				

Introduction 00000	System Model	Attack Tools ○○○○○●	Evaluation 0000000	Conclusion
Results				

Introduction 00000	System Model	Attack Tools 000000	Evaluation	Conclusion
Evaluation				

- libjpeg: image decoding
- VC3: map-reduce framework for SGX

Introduction 00000 System Model

Attack Tools

Evaluation ●000000

Conclusion

libjpeg: High resolution image extraction

Introduction 00000 System Model

Attack Tools

Evaluation

Conclusion

libjpeg: High resolution image extraction

Introduction System Model Attack Tools Evaluation Conclusion 00000 00000 00000

libjpeg: High resolution image extraction

Introduction 00000	System Model	Attack Tools 000000	Evaluation 000000	Conclusion
VC3				

Why is attacking VC3 interesting

- First/only realistic shielding system for Hadoop
- Protects mapper and reducer applications and their data from the OS/cloud
- Uses SGX (Enclaves)

Introduction 00000	System Model	Attack Tools 000000	Evaluation 000000	Conclusion
VC3				

Why is attacking VC3 interesting

- First/only realistic shielding system for Hadoop
- Protects mapper and reducer applications and their data from the OS/cloud
- Uses SGX (Enclaves)

Introduction 00000	System Model	Attack Tools 000000	Evaluation ○○○●○○○	Conclusion
Attack Ove	erview			

Why is attacking VC3 hard

- Only attack framework; not user's secret mappers and reducers
- Framework is small (only 13 code pages)
- Framework does not know application semantics

Introduction 00000	System Model	Attack Tools 000000	Evaluation ○○○●○○○	Conclusion
Attack Ove	erview			

Why is attacking VC3 hard

- Only attack framework; not user's secret mappers and reducers
- Framework is small (only 13 code pages)
- Framework does not know application semantics

Can this leak information?

Introduction 00000	System Model	Attack Tools 000000	Evaluation ○○○●○○○	Conclusion
Attack Ove	erview			

Why is attacking VC3 hard

- Only attack framework; not user's secret mappers and reducers
- Framework is small (only 13 code pages)
- Framework does not know application semantics

Can this leak information?

Map/Reduce spec

"The MapReduce library groups together all intermediate values associated with the same intermediate key I and passes them to the *Reduce* function" ²

VC3 implements grouping using a hash table 😇

²Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters." Communications of the ACM 51.1 (2008): 107-103. [Page 2]

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Attack: Informa	ation Gathering	g Phase		

Introduction 00000	System Model	Attack Tools 000000	Evaluation ○○○○●○○	Conclusion
Attack: Informa	tion Gathering	g Phase		

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Attack: Inf	ormation Gathering	Phase		

Word
$$w$$
 hash(w) $h(w)$

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Attack: Info	ormation Gathering	Phase		

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Attack: Info	ormation Gathering	Phase		

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Attack: Informa	ation Gathering	g Phase		

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Text Recovery Phase

$(len_{n-4}, hash_{n-4})$
$(len_{n-3}, hash_{n-3})$
$(len_{n-2}, hash_{n-2})$
$(len_{n-1}, hash_{n-1})$
$(len_{n},hash_{n})$
$(len_{n+1}, hash_{n+1})$
$(len_{n+2}, hash_{n+2})$
$(len_{n+3}, hash_{n+3})$
$(len_{n+4}, hash_{n+4})$

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Text Recovery Phase

 Introduction
 System Model
 Attack Tools
 Evaluation
 Conclusion

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Attack: Text Recovery Phase

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Text Recovery Phase

Introduction 00000	System Model	Attack Tools 000000	Evaluation ○○○○○○●	Conclusion
Oz text recov	ered			
THE WONDERFUL V				
The Cyclone				
Dorothy lived in the small for the <mark>the tenter room contained al had a big bed in on called a syclome cel</mark>	e to build it had to be carried by usty-looking cookstove a cupbo re corner and Derothya little be lar where the family could go in	y <mark>wagons</mark> many There were <mark>four wall</mark> ard for the <mark>dishest</mark> a table <mark>three or f</mark> d in another <u>There was no garret</u> at	mer and Aunt Em who was the Their s a floor and a roof which made one our chairs and the Jucio Henry and t all and no a small brief dig in the arose mighty enough to crush any wn into the small dark	and <mark>this</mark> Aunt <u>Em</u> round
house broke the bro mass with little crac were the same gray	oad <mark>sweep of flat country </mark> that re ks running through Even the gra	eached to the <mark>edge</mark> of the <mark>sky in all</mark> ass was not green for the sun had s se had been painted but the <mark>sun s</mark>	e great gray brairie on every Not a t The sun had backet the "Jowed land burned the tops of the long blades u stered the baint and the mins washe	<mark>linto a gray</mark> Intil <mark>they</mark>
eyes <mark>and left them</mark> smile <mark>d When Dorot</mark>	a <mark>sober they</mark> had taken the red f thy who was an orphan first <mark>cam</mark>	from her <mark>cheeks and lips and they w</mark> he to her Aunt <u>Em</u> had been so <mark>start</mark>	ged her <mark>They had taken the sparking</mark> vere gray She was thin and gauntan tled by the laughter that she would at the little giri <mark>with</mark> wonder that she	<mark>d</mark> never scream <mark>and l</mark>

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Conclusion				

Enhanced Side-Channels

- memory access detection at higher *spatial* resolution (64 byte vs. 4kB granularity)
- fine-granular breakpoints through timers
- low-noise cache side-channel with single execution

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Conclusion				

Enhanced Side-Channels

- memory access detection at higher spatial resolution (64 byte vs. 4kB granularity)
- fine-granular breakpoints through timers
- low-noise cache side-channel with single execution

Results

- High resolution image extraction from libjpeg
- Document extraction from map/reduce

Introduction 00000	System Model	Attack Tools 000000	Evaluation 0000000	Conclusion
Conclusion				

Enhanced Side-Channels

- memory access detection at higher spatial resolution (64 byte vs. 4kB granularity)
- fine-granular breakpoints through timers
- low-noise cache side-channel with single execution

Results

- High resolution image extraction from libjpeg
- Document extraction from map/reduce

Mitigations

Are increasingly important

• T-SGX, Intel Taint Analysis Tool, Trusted Schedulers