
Introduction System Model Attack Tools Evaluation Conclusion

High Resolution Side Channels for Untrusted Operating Systems

Marcus Hähnel 1 Marcus Peinado 2 Weidong Cui 2

1TU Dresden

2Microsoft Research

2017-07-13

1 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Reasons to distrust the OS

OS

Large code bases, security bugs

rootkit

2 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Reasons to distrust the OS

OS

Large code bases, security bugs

rootkit

2 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Reasons to distrust the OS

OS

Large code bases, security bugs

rootkit

2 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Reasons to distrust the OS

OS

Large code bases, security bugs

rootkit

2 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Reasons to distrust the OS

OS

Large code bases, security bugs

rootkit

2 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Shielding Systems

Removing the OS from the trusted
computing base

Hypervisor-based

Overshadow [ASPLOS’08]

InkTag [ASPLOS’13]

Intel SGX-based

Haven [OSDI’14]

VC3 [Oakland’15]

SCONE [OSDI’16]

Glamdring [ATC’17]

Hypervisor

OS

3 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Shielding Systems

Removing the OS from the trusted
computing base

Hypervisor-based

Overshadow [ASPLOS’08]

InkTag [ASPLOS’13]

Intel SGX-based

Haven [OSDI’14]

VC3 [Oakland’15]

SCONE [OSDI’16]

Glamdring [ATC’17]
Hypervisor

OS

3 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Shielding Systems

Removing the OS from the trusted
computing base

Hypervisor-based

Overshadow [ASPLOS’08]

InkTag [ASPLOS’13]

Intel SGX-based

Haven [OSDI’14]

VC3 [Oakland’15]

SCONE [OSDI’16]

Glamdring [ATC’17]

Hypervisor

OS

3 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Shielding Systems

Removing the OS from the trusted
computing base

Hypervisor-based

Overshadow [ASPLOS’08]

InkTag [ASPLOS’13]

Intel SGX-based

Haven [OSDI’14]

VC3 [Oakland’15]

SCONE [OSDI’16]

Glamdring [ATC’17]
Hypervisor or SGX CPU

OS

3 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Shielding Systems

Removing the OS from the trusted
computing base

Hypervisor-based

Overshadow [ASPLOS’08]

InkTag [ASPLOS’13]

Intel SGX-based

Haven [OSDI’14]

VC3 [Oakland’15]

SCONE [OSDI’16]

Glamdring [ATC’17]
Hypervisor or SGX CPU

OS

Protected Application Memory Pages

3 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack position

But how well do these solutions protect the
application?

4 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Controlled Channels 1

OS still manages shielded applications

Control over page tables

... and thus over page faults

Retrieved

outlines of images

text from font rendering

text from spell checking

Data dependent control flow

// @ Page 1
vo id p r o c e s s D a t a (bool s e c r e t) {

i f (s e c r e t) {
s e c r e t D a t a () ; // @ Page 2

} e l s e {
p u b l i c D a t a () ; // @ Page 3

}
}

Page faults serve as de facto breakpoints
and reveal memory access patterns

1Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. ”Controlled-channel attacks: Deterministic
side channels for untrusted operating systems.”, Oakland 2015

5 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Controlled Channels 1

OS still manages shielded applications

Control over page tables

... and thus over page faults

Retrieved

outlines of images

text from font rendering

text from spell checking

Data dependent control flow

// @ Page 1
vo id p r o c e s s D a t a (bool s e c r e t) {

i f (s e c r e t) {
s e c r e t D a t a () ; // @ Page 2

} e l s e {
p u b l i c D a t a () ; // @ Page 3

}
}

Page faults serve as de facto breakpoints
and reveal memory access patterns

1Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. ”Controlled-channel attacks: Deterministic
side channels for untrusted operating systems.”, Oakland 2015

5 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Controlled Channels 1

OS still manages shielded applications

Control over page tables

... and thus over page faults

Retrieved

outlines of images

text from font rendering

text from spell checking

Data dependent control flow

// @ Page 1
vo id p r o c e s s D a t a (bool s e c r e t) {

i f (s e c r e t) {
s e c r e t D a t a () ; // @ Page 2

} e l s e {
p u b l i c D a t a () ; // @ Page 3

}
}

Page faults serve as de facto breakpoints
and reveal memory access patterns

1Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. ”Controlled-channel attacks: Deterministic
side channels for untrusted operating systems.”, Oakland 2015

5 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Controlled Channels 1

OS still manages shielded applications

Control over page tables

... and thus over page faults

Retrieved

outlines of images

text from font rendering

text from spell checking

Data dependent control flow

// @ Page 1
vo id p r o c e s s D a t a (bool s e c r e t) {

i f (s e c r e t) {
s e c r e t D a t a () ; // @ Page 2

} e l s e {
p u b l i c D a t a () ; // @ Page 3

}
}

Page faults serve as de facto breakpoints
and reveal memory access patterns

1Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. ”Controlled-channel attacks: Deterministic
side channels for untrusted operating systems.”, Oakland 2015

5 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Contributions

Page-Fault Channel Limitations

limited to page granular memory observation

⇒ Increase spatial resolution

requires page toggling

⇒ Improve temporal resolution

is only means to set breakpoint (may be detectable)

⇒ Other ways to step through the application

Show more code than previously thought is vulnerable

6 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Contributions

Page-Fault Channel Limitations

limited to page granular memory observation

⇒ Increase spatial resolution

requires page toggling

⇒ Improve temporal resolution

is only means to set breakpoint (may be detectable)

⇒ Other ways to step through the application

Show more code than previously thought is vulnerable

6 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Contributions

Page-Fault Channel Limitations

limited to page granular memory observation

⇒ Increase spatial resolution

requires page toggling

⇒ Improve temporal resolution

is only means to set breakpoint (may be detectable)

⇒ Other ways to step through the application

Show more code than previously thought is vulnerable

6 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Contributions

Page-Fault Channel Limitations

limited to page granular memory observation

⇒ Increase spatial resolution

requires page toggling

⇒ Improve temporal resolution

is only means to set breakpoint (may be detectable)

⇒ Other ways to step through the application

Show more code than previously thought is vulnerable

6 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Contributions

Page-Fault Channel Limitations

limited to page granular memory observation

⇒ Increase spatial resolution

requires page toggling

⇒ Improve temporal resolution

is only means to set breakpoint (may be detectable)

⇒ Other ways to step through the application

Show more code than previously thought is vulnerable

6 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Contributions

Page-Fault Channel Limitations

limited to page granular memory observation

⇒ Increase spatial resolution

requires page toggling

⇒ Improve temporal resolution

is only means to set breakpoint (may be detectable)

⇒ Other ways to step through the application

Show more code than previously thought is vulnerable

6 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Contributions

Page-Fault Channel Limitations

limited to page granular memory observation

⇒ Increase spatial resolution

requires page toggling

⇒ Improve temporal resolution

is only means to set breakpoint (may be detectable)

⇒ Other ways to step through the application

Show more code than previously thought is vulnerable

6 / 24

Introduction System Model Attack Tools Evaluation Conclusion

System Model

Assumptions

Working shielding system

... protects integrity and security of
applications’ memory against direct access

Commodity OS

... is still responsible for:

Memory management

Scheduling

Hardware Configuration

Hypervisor or SGX CPU

OS

Protected Application

7 / 24

Introduction System Model Attack Tools Evaluation Conclusion

System Model

Assumptions

Working shielding system

... protects integrity and security of
applications’ memory against direct access

Commodity OS

... is still responsible for:

Memory management

Scheduling

Hardware Configuration

Hypervisor or SGX CPU

OS

Protected Application

7 / 24

Introduction System Model Attack Tools Evaluation Conclusion

System Model

Assumptions

Working shielding system

... protects integrity and security of
applications’ memory against direct access

Commodity OS

... is still responsible for:

Memory management

Scheduling

Hardware Configuration

Hypervisor or SGX CPU

OS

Protected Application

7 / 24

Introduction System Model Attack Tools Evaluation Conclusion

System Model

Assumptions

Working shielding system

... protects integrity and security of
applications’ memory against direct access

Commodity OS

... is still responsible for:

Memory management

Scheduling

Hardware Configuration

Hypervisor or SGX CPU

OS

Protected Application

7 / 24

Introduction System Model Attack Tools Evaluation Conclusion

System Model

Assumptions

Working shielding system

... protects integrity and security of
applications’ memory against direct access

Commodity OS

... is still responsible for:

Memory management

Scheduling

Hardware Configuration

Hypervisor or SGX CPU

OS

Protected Application

7 / 24

Introduction System Model Attack Tools Evaluation Conclusion

System Model

Assumptions

Working shielding system

... protects integrity and security of
applications’ memory against direct access

Commodity OS

... is still responsible for:

Memory management

Scheduling

Hardware Configuration
Hypervisor or SGX CPU

OS

Protected Application

7 / 24

Introduction System Model Attack Tools Evaluation Conclusion

New Attack Tools

8 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Timer-based Attacks

Scheduling

The OS has control over scheduling ... and thus over timers

Challenges

25 MHz LAPIC Timer vs. 4 GHz CPU clock

No page fault address

Figure: Accessed & Dirty bits in PTE

9 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Timer-based Attacks

Scheduling

The OS has control over scheduling ... and thus over timers

Challenges

25 MHz LAPIC Timer vs. 4 GHz CPU clock

No page fault address

Figure: Accessed & Dirty bits in PTE

9 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Timer-based Attacks

Scheduling

The OS has control over scheduling ... and thus over timers

Challenges

25 MHz LAPIC Timer vs. 4 GHz CPU clock

No page fault address

Figure: Accessed & Dirty bits in PTE

9 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Timer-based Attacks

Scheduling

The OS has control over scheduling ... and thus over timers

Challenges

25 MHz LAPIC Timer vs. 4 GHz CPU clock

No page fault address

Figure: Accessed & Dirty bits in PTE

9 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Example

s i z e t s t r l e n (const char ∗ s t r) {
s i z e t l e n = 0 ;
whi le (∗ s t r != ’ \0 ’) {

s t r ++;
l e n ++;

}
re tu rn l e n ;

}

const char ∗ s = ”The” ;
i n t l = s t r l e n (s) ;

*str Attacker count

’T’ 0

’h’
’e’ 3

’\0’ 4

10 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Example

s i z e t s t r l e n (const char ∗ s t r) {
s i z e t l e n = 0 ;
whi le (∗ s t r != ’ \0 ’) {

s t r ++;
l e n ++;

}
re tu rn l e n ;

}

const char ∗ s = ”The” ;
i n t l = s t r l e n (s) ;

*str Attacker count

’T’ 0

’h’
’e’ 3

’\0’ 4

10 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Example

s i z e t s t r l e n (const char ∗ s t r) {
s i z e t l e n = 0 ;
whi le (∗ s t r != ’ \0 ’) {

s t r ++;
l e n ++;

}
re tu rn l e n ;

}

const char ∗ s = ”The” ;
i n t l = s t r l e n (s) ;

*str Attacker count

’T’ 0

’h’
’e’ 3

’\0’ 4

10 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Example

s i z e t s t r l e n (const char ∗ s t r) {
s i z e t l e n = 0 ;
whi le (∗ s t r != ’ \0 ’) {

s t r ++;
l e n ++;

}
re tu rn l e n ;

}

const char ∗ s = ”The” ;
i n t l = s t r l e n (s) ;

*str Attacker count

’T’ 0

’h’
’e’ 3

’\0’ 4

10 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Example

s i z e t s t r l e n (const char ∗ s t r) {
s i z e t l e n = 0 ;
whi le (∗ s t r != ’ \0 ’) {

s t r ++;
l e n ++;

}
re tu rn l e n ;

}

const char ∗ s = ”The” ;
i n t l = s t r l e n (s) ;

*str Attacker count

’T’ 1

’h’
’e’ 3

’\0’ 4

10 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Example

s i z e t s t r l e n (const char ∗ s t r) {
s i z e t l e n = 0 ;
whi le (∗ s t r != ’ \0 ’) {

s t r ++;
l e n ++;

}
re tu rn l e n ;

}

const char ∗ s = ”The” ;
i n t l = s t r l e n (s) ;

*str Attacker count

’T’ 1

’h’
’e’ 3

’\0’ 4

10 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Example

s i z e t s t r l e n (const char ∗ s t r) {
s i z e t l e n = 0 ;
whi le (∗ s t r != ’ \0 ’) {

s t r ++;
l e n ++;

}
re tu rn l e n ;

}

const char ∗ s = ”The” ;
i n t l = s t r l e n (s) ;

*str Attacker count

’T’ 1
’h’ 1

’e’ 3
’\0’ 4

10 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Example

s i z e t s t r l e n (const char ∗ s t r) {
s i z e t l e n = 0 ;
whi le (∗ s t r != ’ \0 ’) {

s t r ++;
l e n ++;

}
re tu rn l e n ;

}

const char ∗ s = ”The” ;
i n t l = s t r l e n (s) ;

*str Attacker count

’T’ 1
’h’ 2
’e’ 3

’\0’ 4

10 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Results

strlen function

99.98 % of string lengths detected correctly

Can effectively single-step through the application

Works where Page-Fault Channel fails

Can replace page-fault based break points

Requires fine-tuning for correct timing

11 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Prime & Probe

Traditional Cache Side-Channel

Unprivileged attacker and victim on same machine share cache

Attacker can indirectly observe victims memory access

Attacker: Prime

Victim: Run

Attacker: Probe

12 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Prime & Probe

Traditional Cache Side-Channel

Unprivileged attacker and victim on same machine share cache

Attacker can indirectly observe victims memory access

Attacker: Prime

Victim: Run

Attacker: Probe

12 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Prime & Probe

Traditional Cache Side-Channel

Unprivileged attacker and victim on same machine share cache

Attacker can indirectly observe victims memory access

Attacker: Prime

Victim: Run

Attacker: Probe

12 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Prime & Probe

Traditional Cache Side-Channel

Unprivileged attacker and victim on same machine share cache

Attacker can indirectly observe victims memory access

Attacker: Prime

Victim: Run

Attacker: Probe

12 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Prime & Probe

Traditional Cache Side-Channel

Unprivileged attacker and victim on same machine share cache

Attacker can indirectly observe victims memory access

Attacker: Prime

Victim: Run

Attacker: Probe

12 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Prime & Probe

Traditional Cache Side-Channel

Unprivileged attacker and victim on same machine share cache

Attacker can indirectly observe victims memory access

Attacker: Prime

Victim: Run

Attacker: Probe

12 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Prime & Probe

But we are not an unprivileged attacker, but the OS

Noise reduction by

Targeted Breakpoints

Preventing other applications from being scheduled

Turn off prefetching

13 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Results

0 8 16 24 32 40 48 56 63
0

5

10

15

Associativity Set

A
rr

ay
A

cc
es

s
0 2 4 6 8

14 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Results

0 8 16 24 32 40 48 56 63
0

5

10

15

Associativity Set

A
rr

ay
A

cc
es

s
0 2 4 6 8

14 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Evaluation

Victims

libjpeg: image decoding

VC3: map-reduce framework for SGX

15 / 24

Introduction System Model Attack Tools Evaluation Conclusion

libjpeg: High resolution image extraction

16 / 24

Introduction System Model Attack Tools Evaluation Conclusion

libjpeg: High resolution image extraction

16 / 24

Introduction System Model Attack Tools Evaluation Conclusion

libjpeg: High resolution image extraction

17 / 24

Introduction System Model Attack Tools Evaluation Conclusion

VC3

Why is attacking VC3 interesting

First/only realistic shielding system for Hadoop

Protects mapper and reducer applications and their data from the OS/cloud

Uses SGX (Enclaves)

Enclave Enclave
Mapper

VC3 Framework

Decrypted
inputs

Plain
intermediate
KV pairs

Encrypted
inputs

Encrypted
intermediates

Reducer

VC3 Framework

Decrypted
intermediates

Plain
output

Encrypted
intermediates

Encrypted
output

Encrypted

Decrypted

18 / 24

Introduction System Model Attack Tools Evaluation Conclusion

VC3

Why is attacking VC3 interesting

First/only realistic shielding system for Hadoop

Protects mapper and reducer applications and their data from the OS/cloud

Uses SGX (Enclaves)

Enclave Enclave
Mapper

VC3 Framework

Decrypted
inputs

Plain
intermediate
KV pairs

Encrypted
inputs

Encrypted
intermediates

Reducer

VC3 Framework

Decrypted
intermediates

Plain
output

Encrypted
intermediates

Encrypted
output

Encrypted

Decrypted

18 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack Overview

Why is attacking VC3 hard

Only attack framework; not user’s secret mappers and reducers

Framework is small (only 13 code pages)

Framework does not know application semantics

Can this leak information?

Map/Reduce spec

”The MapReduce library groups together all intermediate values associated with the
same intermediate key I and passes them to the Reduce function” 2

VC3 implements grouping using a hash table

2Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce: simplified data processing on large clusters.”
Communications of the ACM 51.1 (2008): 107-103. [Page 2]

19 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack Overview

Why is attacking VC3 hard

Only attack framework; not user’s secret mappers and reducers

Framework is small (only 13 code pages)

Framework does not know application semantics

Can this leak information?

Map/Reduce spec

”The MapReduce library groups together all intermediate values associated with the
same intermediate key I and passes them to the Reduce function” 2

VC3 implements grouping using a hash table

2Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce: simplified data processing on large clusters.”
Communications of the ACM 51.1 (2008): 107-103. [Page 2]

19 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack Overview

Why is attacking VC3 hard

Only attack framework; not user’s secret mappers and reducers

Framework is small (only 13 code pages)

Framework does not know application semantics

Can this leak information?

Map/Reduce spec

”The MapReduce library groups together all intermediate values associated with the
same intermediate key I and passes them to the Reduce function” 2

VC3 implements grouping using a hash table

2Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce: simplified data processing on large clusters.”
Communications of the ACM 51.1 (2008): 107-103. [Page 2]

19 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Information Gathering Phase

Victim

Concrete attack here: WordCount (or similar: e.g., inverted index)

Word w hash(w)

word length
timer attack

h(w) map[h(w)]

hash(word)
cache side-channel

HashMap
...

h(keya)

h(keyb)
...

20 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Information Gathering Phase

Victim

Concrete attack here: WordCount (or similar: e.g., inverted index)

Word w

hash(w)

word length
timer attack

h(w) map[h(w)]

hash(word)
cache side-channel

HashMap
...

h(keya)

h(keyb)
...

20 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Information Gathering Phase

Victim

Concrete attack here: WordCount (or similar: e.g., inverted index)

Word w hash(w)

word length
timer attack

h(w)

map[h(w)]

hash(word)
cache side-channel

HashMap
...

h(keya)

h(keyb)
...

20 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Information Gathering Phase

Victim

Concrete attack here: WordCount (or similar: e.g., inverted index)

Word w hash(w)

word length
timer attack

h(w) map[h(w)]

hash(word)
cache side-channel

HashMap
...

h(keya)

h(keyb)
...

20 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Information Gathering Phase

Victim

Concrete attack here: WordCount (or similar: e.g., inverted index)

Word w hash(w)

word length
timer attack

h(w) map[h(w)]

hash(word)
cache side-channel

HashMap
...

h(keya)

h(keyb)
...

20 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Information Gathering Phase

Victim

Concrete attack here: WordCount (or similar: e.g., inverted index)

Word w hash(w)

word length
timer attack

h(w) map[h(w)]

hash(word)
cache side-channel

HashMap
...

h(keya)

h(keyb)
...

20 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Text Recovery Phase

Using the gathered information to re-construct the document

Candidate List
all words with length ln
and hash hn

Dictionary

Prune and
order
candidate list

wordn1 ,wordn2
...

...

(lenn−4, hashn−4)

(lenn−3, hashn−3)

(lenn−2, hashn−2)

(lenn−1, hashn−1)

(lenn, hashn)

(lenn+1, hashn+1)

(lenn+2, hashn+2)

(lenn+3, hashn+3)

(lenn+4, hashn+4)
...

21 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Text Recovery Phase

Using the gathered information to re-construct the document

Candidate List
all words with length ln
and hash hn

Dictionary

Prune and
order
candidate list

wordn1 ,wordn2
...

...

(lenn−4, hashn−4)

(lenn−3, hashn−3)

(lenn−2, hashn−2)

(lenn−1, hashn−1)

(lenn, hashn)

(lenn+1, hashn+1)

(lenn+2, hashn+2)

(lenn+3, hashn+3)

(lenn+4, hashn+4)
...

21 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Text Recovery Phase

Using the gathered information to re-construct the document

Candidate List
all words with length ln
and hash hn

Dictionary

Prune and
order
candidate list

wordn1 ,wordn2
...

...

(lenn−4, hashn−4)

(lenn−3, hashn−3)

(lenn−2, hashn−2)

(lenn−1, hashn−1)

(lenn, hashn)

(lenn+1, hashn+1)

(lenn+2, hashn+2)

(lenn+3, hashn+3)

(lenn+4, hashn+4)
...

21 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Attack: Text Recovery Phase

Using the gathered information to re-construct the document

Candidate List
all words with length ln
and hash hn

Dictionary

Prune and
order
candidate list

wordn1 ,wordn2
...

...

(lenn−4, hashn−4)

(lenn−3, hashn−3)

(lenn−2, hashn−2)

(lenn−1, hashn−1)

(lenn, hashn)

(lenn+1, hashn+1)

(lenn+2, hashn+2)

(lenn+3, hashn+3)

(lenn+4, hashn+4)
...

21 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Oz text recovered

23 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Conclusion

Enhanced Side-Channels

memory access detection at higher spatial resolution (64 byte vs. 4kB granularity)

fine-granular breakpoints through timers

low-noise cache side-channel with single execution

Results

High resolution image extraction from libjpeg

Document extraction from map/reduce

Mitigations

Are increasingly important

T-SGX, Intel Taint Analysis Tool, Trusted Schedulers

24 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Conclusion

Enhanced Side-Channels

memory access detection at higher spatial resolution (64 byte vs. 4kB granularity)

fine-granular breakpoints through timers

low-noise cache side-channel with single execution

Results

High resolution image extraction from libjpeg

Document extraction from map/reduce

Mitigations

Are increasingly important

T-SGX, Intel Taint Analysis Tool, Trusted Schedulers

24 / 24

Introduction System Model Attack Tools Evaluation Conclusion

Conclusion

Enhanced Side-Channels

memory access detection at higher spatial resolution (64 byte vs. 4kB granularity)

fine-granular breakpoints through timers

low-noise cache side-channel with single execution

Results

High resolution image extraction from libjpeg

Document extraction from map/reduce

Mitigations

Are increasingly important

T-SGX, Intel Taint Analysis Tool, Trusted Schedulers

24 / 24

	Introduction
	Motivation
	State of the Art

	System Model
	Attack Tools
	Timers
	Cache

	Evaluation
	libjpeg
	VC3

	Conclusion

