
Improving File System Performance

of Mobile Storage Systems

Using a Decoupled Defragmenter

USENIX Annual Technical Conference, 2017

Sangwook Shane Hahn*, Sungjin Lee†, Cheng Ji‡, Li-Pin Chang+,

Inhyuk Yee*, Liang Shi#, Chun Jason Xue‡ and Jihong Kim*

*Seoul National University
†Daegu Gyeongbuk Institute of Science and Technology (DGIST)

‡City University of Hong Kong
+National Chiao-Tung University

#Chongqing University

/ 20

Outline

• Impact of File Fragmentation/Defragmentation

• Key Observations on Flash-based File Fragmentation

 Decoupled Fragmentation

 Dominant Impact of Logical Fragmentation

• Janusd: a Decoupled Defragmenter

• Experimental Results

• Conclusions

2

/ 20

Gradual Performance Degradation on Smartphones

3

Application launching times increase up

to 3 times on 2-year used smartphones

Performance of Android smartphones

gradually degrades as smartphones age

Galaxy S6

(new)

Galaxy S6

(6 months used)

Galaxy S6

(1 year used)

Galaxy S6

(2 years used)

Application

launching time

/ 20

Root Cause: File Fragmentation

4

Defragmentation can improve the

degraded performance by fragmentation

Q: Why does

performance

degrade ?

Nexus 6 G5 Galaxy S6 Xperia Z3

Application launching time

A: File

fragmentation

16% files

fragmented

22% files

fragmented

27% files

fragmented

34% files

fragmented

/ 20

File Fragmentation Recurrence on Smartphones

5

File fragmentation recurs even in a week

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days

S6 (92%)

N6 (83%)

N5 (74%)

S3 (63%)

Xperia Z3

Galaxy S6

G5

Nexus 6

Q: How often should we

defrag smartphones ?

Average

of fragments

per file

Degree of

file fragmentation

Days since defragmentation

User begins

to experience

performance

degradation

/ 20

Lifetime Impact of Frequent Defragmentation

6

Q: Are there any side effects from

frequent defragmentation?

The amount of

data copies by

defragmentation

(GB)

0

10

20

30

N5 (74%) N6 (83%) S6 (92%) Z3

1 day 3 days 7 days 14 days

Galaxy S6Nexus 6 G5 Xperia Z3

Weekly defragmentation can reduce
the storage lifetime by more than 10%

/ 20

Summary: Impact of File Fragmentation/Defragmentation

7

File fragmentation in NAND flash-based storage

is quite different from conventional one in HDD

1. Decoupled fragmentation

2. High overhead of logical fragmentation

Short Lifetime

High Performance

Long Lifetime

Low Performance

High Performance

Long Lifetime
Decoupled Defragmenter

Defragmentation

with near zero

data copies

is needed

NAND Flash-based

Storage

/ 20

Observation 1: Decoupled Fragmentation

8

Logical address space

Contiguous File A

Logical address space

Physical address space

NAND flash-based storage

Fragmented File B

HDD

Physical address space

Contiguous Sectors

Fragmented Sectors

Contiguous

File A

Fragmented

File B

Contiguous File A

Address indirection

Physical

fragmentation

Low degree of

I/O parallelism

High degree of

I/O parallelism

Evenly

distributed data

Unevenly

distributed data

Fragmentation at logical

space and physical space

All data are stored using

address indirection

/ 20

0

20

40

60

Percentage

(%)

9

1. There is no correlation between
logical/physical fragmentation

2. Physical fragmentation rarely occurs

Logically contiguous

but,

physically fragmentedLogically fragmented

but,

physically contiguous

Observation 1: Decoupled Fragmentation

None

Low

Medium

High

Less than 1%

/ 20

Observation 2: High Overhead of Logical Fragmentation

10

0

500

1000

1500

2000

2500

1 2 4 8

File System

Block Layer

Device Driver

Logical fragmentation overhead overwhelms
physical fragmentation overhead

Degree of Logical Fragmentation

Android Platform

File System

Block I/O Layer

Device Driver

Mobile Storage

Q: How much the impact of logical/physical

fragmentation on performance?

I/O Execution Time (us)

Logical

fragmentation

Logical

fragmentation

of block I/Os

increases

HighMediumLowNone
0

500

1000

1500

2000

2500

1 2 4 8

Mobile Storage

Degree of Physical Fragmentation

I/O Execution Time (us)

Physical

fragmentation

HighMediumLowNone

/ 20

Logical

fragmentation

Solution for Decoupled Fragmentation

11
Application Launching Time

Physical

fragmentation

Janus Defragmenter

Physical

Defragmenter

Logical

Defragmenter

Defrag logical fragmentation

using address remapping

without data copies

Improve the low degree

of I/O parallelism

Janusd

Contiguous File

Fragmented File

Logical

fragmentation

Application Launching Time

Contiguous File

Fragmented File

Physical

fragmentation
Common

case

Rare

case

/ 20

Outline

• Impact of File Fragmentation/Defragmentation

• Key Observations on Flash-based File Fragmentation

 Decoupled Fragmentation

 Dominant Impact of Logical Fragmentation

• Janusd: a Decoupled Defragmenter

• Experimental Results

• Conclusions

12

/ 20

Overview of Decoupled Defragmenter

13

Decoupled Defragmenter (Janusd)

Improves I/O performance of mobile storage

while minimizing lifetime degradation

Disperse

physical

fragments

Detect

physical

fragmentation

Firmware

(FTL)

Use new custom
interface

Physical

Defragmenter Maintain log for
reverse mapping

Detect

logical

fragmentation

Detect

logical

fragmentation

Remap

LBAs of logical

fragments

Remap

LBAs of logical

fragments

Deliver

modified LBAs

Deliver

modified LBAsLogical

Defragmenter

Update FTL’s

mapping table

Update FTL’s

mapping table

e4defrag

/ 20

Logical Defragmenter (JanusdL)

14

0 1 2 3 4 5 6 7 8 9 10

File A

Logical Block Address Space

e4defrag

Logical

Defragmenter

Modified LBAs

LBA 8 → LBA 3

LBA 9 → LBA 4

0 1 2 3 4 5 6 7 8 9 10

Logical Block Address Space

File A File A

1. User

triggers

e4defrag

2. Detect

logical

fragments

4. Deliver

modified LBAs

3. Logical

defragmentation

without data

copies

/ 20

Logical Defragmenter (JanusdL)

15

Mobile Storage

L2P Mapping Table

NAND Flash Memory

A B C D

0 1 2 8

E

9

NAND Page

space

OOB area

(LBA)

L2P Mapping Table

0
1

2
3
4

8
9

NAND PAGE A

NAND PAGE B

NAND PAGE C

NAND PAGE D

NAND PAGE E

0
1

2
3
4

8
9

NAND PAGE A

NAND PAGE B

NAND PAGE C

NAND PAGE D

NAND PAGE E

L2P Mapping Table

Defrag log

6. Maintain

remapping

history

5. Remapping

Logical

Defragmenter

/ 20

Evaluation Scenarios

16

 We collected six different application usage traces

 Application launching scenarios

 Interactive application usage scenario (10 minutes)

Scenario Scenario Description

Chrome Launching app → Viewing webpages

Messenger Launching app → Viewing chat records

Gmail Launching app → Viewing emails

Facebook Launching app → Viewing online news

Twitter Launching app → Viewing online news

Game Launching Pokemon Go → Playing game

/ 20

Experimental Settings

17

Emulation at

Host-level FTL +

Customized SSD

Application

Launch/

Usage

Trace

Collector
System call

trace

Trace

Replayer

Android

smartphone

/ 20

Result 1: Application Launching Time

18

0 1 2 3 4 5 6

baseline

e4defrag

janusdL

janusd2.55

Degree of Logical

Fragmentation
Application Launching Time (sec)

3.02

1.34

1.99

2.18

2.75

-18%

-22%

-36%

-33%

-28%

-53%

1. The more file fragmentation, the greater
the performance improvement

2. Janusd achieves better performance
than conventional defragmenter (e4defrag)

/ 20

Result 2: I/O Throughput

19

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Week)

Baseline e4defrag (4 weeks) e4defrag (2 weeks)

e4defrag (1 week) JanusdL (1 week) Janusd (1 week)

Normalized

I/O throughput

1. Performance degradation occurs
even when we defrag smartphone every 2 weeks

2. Conventional defragmenter has limitations in
solving physical fragmentation

10 minute

usage

scenario

/ 20

Conclusion

20

• We have presented a decoupled defragmenter
for improving the file system performance

• JanusdL defrags logical fragmentation without data copies by

remapping LBAs with FTL’s mapping table

• JanusdP defrags physical fragmentation by improving

I/O parallelism of files

• Improved application launching times by 32% on average

• Reduced the amount of data copies by 99.99% on average

• Future expends

• Free space defragmentation tool

• Defrag-on-write() which triggers JanusdL right before write()

/ 2021

