
SmartMD: A High Performance

Deduplication Engine with Mixed Pages

Fan Guo1, Yongkun Li1, Yinlong Xu1, Song Jiang2, John C. S. Lui3

1University of Science and Technology of China
2University of Texas, Arlington

3The Chinese University of Hong Kong

1

Overview

➢TLB (Translation Lookaside Buffer) miss carries high penalty

−Due to the access of page table

−E.g., four level address mapping for x86-64 system with 4KB-page memory

➢Virtualization increases TLB miss penalty

−2D page table walk (GVA -> GPA -> HPA)

−Up to 24 memory references

➢Uneven increase of TLB & memory size exacerbates the problem

2

Large Pages

➢Large pages improve memory access performance

−Fewer page table entries (1/512)

−Larger TLB coverage

3

Virtual

address
entry1

entry1

TLB hit

TLB miss

Physical

address

Physical

address

2MB memory

region

Large

page

TLB

Page Table

Benefits of Large Pages

➢Performance improvement with large page

−Enabling large pages in both guest and host can improve memory

access performance by up to 68%

4

Benchmark
Host: Base

Guest: Large

Host: Large

Guest: Base

Host: Large

Guest: Large

SPECjbb 1.06 1.12 1.30

Graph500 1.26 1.34 1.68

Liblinear 1.13 1.14 1.37

Sysbench 1.07 1.09 1.20

Biobench 1.02 1.18 1.37

Deduplication with Large Pages

➢Redundant data is very common among VMs

−Many base pages (4KB) share the same content

➢Large pages reduce the deduplication opportunerties

5

−Very few large pages (2MB)

are exactly the same

−ADA: aggressively split large

pages into base pages

Dedup. with

large pages

(0.8% ~ 5.9%)

Dedup. with

base pages

(13.7% ~ 47.9%)

Motivation

➢Base pages vs. large pages

−Exists a tradeoff between access performance and deduplication rate

➢Question: can we enjoy both benefits of high access

performance and high deduplication rate simultaneously?

6

Access Performance Deduplication Rate

Base pages (4KB) Low High

Large Pages (2MB) High Low

Our Solution

➢SmartMD: an adaptive management scheme with mixed pages

−Monitors page information (access frequency, repetition rate)

−Adaptively splits/reconstructs large pages: manage with mixed pages

➢Observation: many large pages have high access frequency but

few duplicate subpages

7

High-level Idea of SmartMD

➢Lightweight scheme to monitor page information

−Access frequency and repetition rate

➢Adaptive scheme to selectively split/reconstruct large pages

− Split into base pages

• Cold pages with high repetition rate

• For high deduplication rate

−Keep in large pages

• Hot pages with low repetition rate

• For high access performance

−Reconstruct: hot pages

• For high access performance

8

Key Issues

9

Access

frequency

monitor
Repetition

rate

monitor

Adaptive

conversion

Monitor Access Frequency

➢Scan pages periodically

➢In each scan interval (e.g., 6s)

−Reset the access bits of all pages

−Sleep (e.g., 2.6s)

−Check the access bits & update access frequency (+/- by one)

−Sleep until this scan interval ends

➢Use a counter to keep the access frequency of each large page

10

➢Scan pages periodically, and for each large page

−Check each of its subpages and label it if it is a duplicate

−Use a counter to record repetition rate

➢Counting bloom filter

−# of entries: 8 # of base pages

−Each entry: a 3-bit counter

−3 hash functions to index

➢Sampling

−Sample only 25% subpages for pages being checked before and not being

modified in last interval

Monitor Repetition Rate

11

➢Selectively split/reconstruct: adjust para. based on mem. util.

−Split: Acc. Freq. < Threscold & Rep. Rate > Thresrepet

−Reconstruct: Acc. Freq. > Threshot

➢Implementation

−Split: well supported by Linux

−Reconstruct
• Gathering subpages

• Migrate remapped subpages

• Break shared subpages

• Recreating page descriptor

• Updating page table

Adaptive Conversion

12

Deduplication

➢Deduplication thread

−Modify KSM’s deduplication algorithm to

merge duplicated pages

• Two red-black trees to manage pages

−With duplicate labels, SmartMD improves

deduplication efficiency

• Compare pages with duplicate labbels only

• The # of candidate pages for comparison is reduced

• The height of the red-black trees is reduced

• The # of comparisons to merge a page is reduced

13

Evaluation

➢Experiment setting

−Host: two Intel Xeon E5-2650 v4 2.20GHz processors, 64GB RAM

−Guest: QEMU&KVM. Boot up 4 VMs on one physical CPU, each VM is

assigned one VCPU and 4GB RAM

−Both guest and host OSes are Ubuntu 14.04

➢Workloads and memory demands w/o deduplication

14

Graph-500 SPECjbb Liblinear Sysbench Biobench

2.7GB 1.7GB 4.0GB 2.93GB 3.42GB

Overhead of SmartMD

➢SmartMD reduces CPU consumption even if it requires more

CPU cycles for monitoring

−Average CPU utilization sampled in every second

➢SmartMD introduces negligible memory overhead

−3/212 for storing counting bloom filter, and 1/216 for keeping access

frequency & repetition rate

−Tens of MB for 16GB memory

15

Performance of SmartMD

➢Comparison deduplication schemes

−KSM: aggressively splits large pages which contain duplicate subpages

• Already supported in Linux

• Achieves best memory saving

−No-splitting: deduplicates memory in unit of 2MB page

• Without splitting any large page

• Achieves best access performance

− Ingens (OSDI’16): Splits large pages with low access frequency w/o

considering repetition rate

16

Tradeoff

➢KSM and no-splitting stand for two extreme points on the tradeoff

curve (best performance vs. best memory saving)

17

Tradeoff

➢KSM and no-splitting stand for two extreme points on the tradeoff

curve (best performance vs. best memory saving)

18

➢SmartMD achieves

−similar performance

with no-splitting

−similar memory

saving with KSM

➢Takes both benefits

simultaneously

Comparison with Ingens

➢Memory saving

➢SmartMD can save 30% to 2.5x more memory than Ingens

with similar access performance

19

Performance in Overcommitted Systems

➢Overcommitment level (ratios of memory demand of all VMs to

usable memory size): 0.8, 1.1, 1.4

−Limit the host’s memory by running an in-memory file system (hugetlbfs)

20

➢SmartMD achieves up to 38.6%

of performance improvement

over other schemes

Performance on NUMA Machine

➢Setting: 2 VMs on one physical CPU and two on a different CPU

−Baseline: no-splitting (best access performance)

➢NUMA effect is very small

−The extra performance reduction on NUMA machine is < 2% comparing to

Single-CPU

21

Conclusions

➢Tradeoff: large pages improve memory access performance, but

reduce deduplication opportunities

−Many pages have high access frequency but few duplicate subpages

➢We propose SmartMD, an adaptive scheme to manage

memory with mixed pages

−Split: cold pages with high repetition rate

−Reconstruct: hot pages

−SmartMD simultaneously takes both benefits

• High memory performance (by accessing with large pages)

• High memory saving (by deduplcating with base pages)

22

Thanks!

Q&A

23

