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Overview

➢TLB (Translation Lookaside Buffer) miss carries high penalty 

−Due to the access of page table

−E.g., four level address mapping for x86-64 system with 4KB-page memory

➢Virtualization increases TLB miss penalty

−2D page table walk (GVA -> GPA -> HPA)

−Up to 24 memory references

➢Uneven increase of TLB & memory size exacerbates the problem
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Large Pages

➢Large pages improve memory access performance

−Fewer page table entries (1/512) 

−Larger TLB coverage
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Benefits of Large Pages

➢Performance improvement with large page

−Enabling large pages in both guest and host can improve memory 

access performance by up to 68%
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Benchmark
Host: Base

Guest: Large

Host: Large

Guest: Base

Host: Large

Guest: Large

SPECjbb 1.06 1.12 1.30

Graph500 1.26 1.34 1.68

Liblinear 1.13 1.14 1.37

Sysbench 1.07 1.09 1.20

Biobench 1.02 1.18 1.37



Deduplication with Large Pages

➢Redundant data is very common among VMs

−Many base pages (4KB) share the same content

➢Large pages reduce the deduplication opportunerties
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−Very few large pages (2MB) 

are exactly the same

−ADA: aggressively split large 

pages into base pages

Dedup. with 

large pages 

(0.8% ~ 5.9%)

Dedup. with 

base pages 

(13.7% ~ 47.9%)



Motivation

➢Base pages vs. large pages

−Exists a tradeoff between access performance and deduplication rate

➢Question: can we enjoy both benefits of high access 

performance and high deduplication rate simultaneously?
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Access Performance Deduplication Rate

Base pages (4KB) Low High

Large Pages (2MB) High Low



Our Solution

➢SmartMD: an adaptive management scheme with mixed pages

−Monitors page information (access frequency, repetition rate)

−Adaptively splits/reconstructs large pages: manage with mixed pages

➢Observation: many large pages have high access frequency but 

few duplicate subpages
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High-level Idea of SmartMD

➢Lightweight scheme to monitor page information

−Access frequency and repetition rate

➢Adaptive scheme to selectively split/reconstruct large pages

− Split into base pages

• Cold pages with high repetition rate

• For high deduplication rate

−Keep in large pages

• Hot pages with low repetition rate

• For high access performance

−Reconstruct: hot pages

• For high access performance
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Key Issues
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Monitor Access Frequency

➢Scan pages periodically

➢In each scan interval (e.g., 6s)

−Reset the access bits of all pages

−Sleep (e.g., 2.6s)

−Check the access bits & update access frequency (+/- by one)

−Sleep until this scan interval ends

➢Use a counter to keep the access frequency of each large page
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➢Scan pages periodically, and for each large page

−Check each of its subpages and label it if it is a duplicate

−Use a counter to record repetition rate

➢Counting bloom filter

−# of entries: 8 # of base pages

−Each entry: a 3-bit counter

−3 hash functions to index

➢Sampling

−Sample only 25% subpages for pages being checked before and not being 

modified in last interval

Monitor Repetition Rate
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➢Selectively split/reconstruct: adjust para. based on mem. util.

−Split: Acc. Freq. < Threscold & Rep. Rate > Thresrepet

−Reconstruct: Acc. Freq. > Threshot

➢Implementation

−Split: well supported by Linux

−Reconstruct
• Gathering subpages

• Migrate remapped subpages 

• Break shared subpages

• Recreating page descriptor

• Updating page table

Adaptive Conversion
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Deduplication

➢Deduplication thread

−Modify KSM’s deduplication algorithm to 

merge duplicated pages

• Two red-black trees to manage pages

−With duplicate labels, SmartMD improves 

deduplication efficiency

• Compare pages with duplicate labbels only

• The # of candidate pages for comparison is reduced

• The height of the red-black trees is reduced

• The # of comparisons to merge a page is reduced
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Evaluation

➢Experiment setting

−Host:  two Intel Xeon E5-2650 v4 2.20GHz processors, 64GB RAM

−Guest: QEMU&KVM. Boot up 4 VMs  on one physical CPU, each VM is 

assigned one VCPU and 4GB RAM

−Both guest and host OSes are Ubuntu 14.04

➢Workloads and memory demands w/o deduplication
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Graph-500 SPECjbb Liblinear Sysbench Biobench

2.7GB 1.7GB 4.0GB 2.93GB 3.42GB



Overhead of SmartMD

➢SmartMD reduces CPU consumption even if it requires more 

CPU cycles for monitoring

−Average CPU utilization sampled in every second

➢SmartMD introduces negligible memory overhead

−3/212 for storing counting bloom filter, and 1/216 for keeping access 

frequency & repetition rate

−Tens of MB for 16GB memory
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Performance of SmartMD

➢Comparison deduplication schemes

−KSM: aggressively splits large pages which contain duplicate subpages

• Already supported in Linux

• Achieves best memory saving

−No-splitting: deduplicates memory in unit of 2MB page 

• Without splitting any large page 

• Achieves best access performance

− Ingens (OSDI’16): Splits large pages with low access frequency w/o 

considering repetition rate
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Tradeoff

➢KSM and no-splitting stand for two extreme points on the tradeoff 

curve (best performance vs. best memory saving)
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Tradeoff

➢KSM and no-splitting stand for two extreme points on the tradeoff 

curve (best performance vs. best memory saving)
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➢SmartMD achieves 

−similar performance 

with no-splitting

−similar memory 

saving with KSM

➢Takes both benefits

simultaneously



Comparison with Ingens

➢Memory saving

➢SmartMD can save 30% to 2.5x more memory than Ingens

with similar access performance
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Performance in Overcommitted Systems

➢Overcommitment level (ratios of memory demand of all VMs to 

usable memory size): 0.8, 1.1, 1.4

−Limit the host’s memory by running an in-memory file system (hugetlbfs)
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➢SmartMD achieves up to 38.6% 

of performance improvement 

over other schemes



Performance on NUMA Machine

➢Setting: 2 VMs on one physical CPU and two on a different CPU

−Baseline: no-splitting (best access performance)

➢NUMA effect is very small

−The extra performance reduction on NUMA machine is < 2% comparing to 

Single-CPU
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Conclusions

➢Tradeoff: large pages improve memory access performance, but 

reduce deduplication opportunities

−Many pages have high access frequency but few duplicate subpages

➢We propose SmartMD, an adaptive scheme to manage 

memory with mixed pages 

−Split: cold pages with high repetition rate

−Reconstruct: hot pages

−SmartMD simultaneously takes both benefits

• High memory performance (by accessing with large pages)

• High memory saving (by deduplcating with base pages)
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Thanks!

Q&A
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