Multi-Hypervisor Virtual Machines:
Enabling An Ecosystem of Hypervisor-level Services

Kartik Gopalan, Rohith Kugve, Hardik Bagdi, Yaohui Hu — Binghamton University
Dan Williams, Nilton Bila — IBM T.J. Watson Research Center

BINGHAMTON

UNIVERSITY

State University of New York

Funded by NSF

Hypervisors

* A thin and secure layer in the cloud
- Or -

Hypervisors

* A thin and secure layer in the cloud
i Or -

* Feature-filled cloud differentiators Guest 1
* Migration
* Checkpointing
* High availability
* Live Guest Patching

i Network monitoring Service [Service Service e
. . A B C
* Intrusion detect|0n

e Other VMI

Hypervisor

Lots of third-party interest in hypervisor-level
services

* Ravello

* Bromium

* XenBlanket But limited support for third party
+ McCafe DeepDefender services from base hypervisor.
* Secvisor

* Cloudvisor

e And more...

How can a guest use multiple third-party

hypervisor-level services?

e Our Solution: Span virtualization

* One guest controlled by multiple
coresident hypervisors.

Guest 1

Gue

Service

Service
L1s|| A 8

Service
C

E

8 ypervsor

Outline

* Why multi-hypervisor virtual machines?
* Design of Span Virtualization

* Evaluations

* Related Work

* Conclusions and Future Work

Option 1: Fat hypervisor

e All services run at the most
privileged level.

* But...hypervisor cannot trust third-
party services in privileged mode.

Guest 1 Guest

Service || Service
B C

Hypervisor

Option 2: Native user space services

Hypervisor User space

 Services run natively in the user space of
the hypervisor

Service | | Service | | Service
A 8 c Guest 1

* Services control guest indirectly via the
hypervisor

e E.g. QEMU with KVM, uDenali :
Hypervisor

* But...Potentially large user-kernel , ,
interface Cloud providers reluctant to run third-

* event interposition and system calls party services native/y, even If in user
space.

Option 3: Service VMs

Service VM

* Run services inside deprivileged
VMs

Service Service Service
N 5 ¢ || Guest1

* Services control guest indirectly via
hypercalls and events

* Single trusted Service VM]
* Runs all services HyperV|Sor

* E.g. Domain0in Xen

[or -

Option 3: Service VMs

* Run services inside deprivileged
VMs

* Services control guest indirectly via
hypercalls and events

e Multiple service VMs
* One per service

* Deprivileged and restartable
* E.g. Service Domains in Xoar

Service VMs
Service Service Service
A B C

Guest 1

Option 3: Service VMs

Service VMs
* Run services inside deprivileged
VMs
Service Service |||| Service
A B C
* Services control guest indirectly via
hypercalls and events

Guest 1

* Multiple service VMs
* One per service

* Deprivileged and restartable
* E.g. Service Domains in Xoar

Lack direct control over ISA-level guest state

* Memory mappings, VCPU scheduling, port-mapped I/0, etc.

Option 4: Nested Virtualization

* Services run in a deprivileged L1
hypervisor, which runs on LO.

Guest 1 Gue

* Services control guest at virtualized ISA
level.

e But ... multiple services must reside in the 11
same L1, i.e. fat L1.

 Vertically Stack L1 hypervisors?
* More than two levels of nesting is inefficient. L HyperV|50r

A B C I

Our solution: Span Virtualization

* Allow multiple coresident L1s to
concurrently control a common guest

* i.e. Horizontal layering of L1 hypervisors Guest 1 G ue

e Guest is a multi-hypervisor virtual machine

* Each L1 Lis| | A B cl ||

» Offers guest services that augment LO’s services.

e Controls one or more guest resources
Ll Hypervisor

Design Goals of Span Virtualization

e Guest Transparency
e Guest remains unmodified

* Service Isolation

* L1s controlling the same
guest are unaware of each
other.

Guest 1 Gue

L1s A B C |:

8 ypervsor

Guest Control operations

* LO supervises which L1 controls which
Span Guest |
Guest resource (unmodified) TaT.y !
ypervisor(s)
* Memory, VCPU and I/O

* LO and L1s communicate via Traps/Faults

(implicit) and Messages (explicit) 8 :
LO Hypervisor Message Channel L1 Traps Guest
. Faults
* Operations:

* Attach an L1 to a specified guest resource

* Detach an L1 from a guest resource

» Subscribe an attached L1 to receive guest events (currently memory events)

* Unsubscribe an L1 from a subscribed guest event

Control over Guest Resources

* Guest Memory
 Shared: All hypervisors have the same consistent view of guest memory

* Guest VCPUs

* Exclusive: All guest VCPUs are controlled by one hypervisor at any instant

* Guest I/O devices
 Exclusive: Different virtual I/O devices of a guest may be controlled by different hypervisors

* Control Transfer
» Control over guest VCPUs and I/O devices can be transferred from one L1 to another via LO.

Memory Translation

Single-Level Virtualization yA Page Table GPA n HPA

Memory Translation

Single-Level Virtualization A Page Table GPA “ HPA
I Shadow
‘ EPT I
Nested Virtualization VA Page GPAW > L1PA %m_)HPA
Table

Memory Translation

Single-Level Virtualization A Page Table GPA “ HPA
Shadow
‘ EPT
Nested Virtualization Page m_mpA
Table
> Shadow
‘ ‘ ‘ EPT
Span Virtualization Page GPA —>L1PA H;A
Table

EPTGuest

Synchronizing Guest Memory Maps

* Guest physical memory to Host physical
memory translation should be the same Process VA
regardless of the translation path. REREEEREE

Span Guest

L1 Hypervisor(s)

S Event Virtual EPT
* LO syncs Shadow EPTs and EPT 4, y 0 Emulator |
\\ \\ E t
¢ GueSt faUItS GPA s L1PA \:“\N\:)et?fications
* Virtual EPT modifications by L1 SEEEEEEEEEE SNEEEEEEE #aIEPT
_________________________ AN - - _ 1l |Virtu
* When L1 directly accesses guest memory LO 3\ Modifications

Guest Event || virtual EPT

. . Handling Trap Handler
e L1s SUbSCﬂbe to guest memory events via

Event Subscription

* E.g. to track write events for dirty page
tracking

HPA
EEE T T T s [[[[T TTTTTT]

|/O Control

* We consider para-virtual I/O in this work

Frontend

1/0

Ring Buffer Response

Backend

Hypervisor

Traditional Para-virtual 1/0

|/O Control

* We consider para-virtual I/O in this work
* A Span Guest’s I/O device and VCPUs may be controlled by different L1s

Frontend Frontend

1/0

Ring Buffer Response

Backend

Hypervisor

Traditional Para-virtual 1/0 Para-virtual 1/0 in Span Virtualization

VCPU control

* Simple for now.

* All VCPUs controlled by one hypervisor
e Either by LO or one of the L1s

e Can we distribute VCPUs among L1s?
* Possible, but no good reason why.
* Requires expensive IPl forwarding across L1s
e Complicates memory synchronization.

Implementation

. pe . G Guest
Guest: Unmodified Ubuntu 15.10, Linux 4.2 gwo Span Guest aemu
Guest g::ns; Inlla InL1b

L0 and L1

L1a L1b

L1 Guest
' Guest 1 L1a KVM ues KVM L1b
QEMU 1.2 and Linux 3.14.2 Guest ;ny QEMU - QEMU el

Modified nesting support in KVM/QEMU o = =
L1: 300+ lines in KVM and 380+ in QEMU

Single Nested Span

Guest controller * Message channel

* For I/O kick and interrupt forwarding

User space QEMU process)
* Currently using UDP messages and hypercalls

Guest initialization, I/0O emulation, Control

Transfer, Migration, etc « Control Transfer

¢ Guest VCPUs and virtio devices can be transferred between L1s and LO

1/0: virtio-over-virtio * Using attach/detach operations

Direct assignment: future work

Example 1: Two L1s controlling one Guest

nested@spanvm-l1a: ~ 92x13

]

nested@spanvm-11la$ sudo tcpdump -q -i br® -n src 10.128.24.1

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on br@, link-type EN1OMB (Ethernet), capture size 96 bytes

e Guest: Infected with :29:31.716554 ARP, Request who-has 10.128.0.1 tell 10.128.24.1, length 28

I<' :29:43.824093 IP 10.128.24.1.22 10.128.0.9.48050: tcp O
:29:43.829140 IP 10.128.24.1.22 10.128.0.9.48050: tcp O
r()()t It :29:43.846370 .128. .128.0.9.48050: tcp 32
:43.848073 .128. .128.0.9.48050: tcp O
:43.867730 .128. .128.0.9.48050: tcp 280
Ll M 't . :29:44.013728 .128. .128.0.9.48050: tcp O
L] : :29:44.014700 .128. .128.0.9.48050: tcp O
d: oni Orlng :29:44.015604 .128. .128.0.9.48050: tcp 56

B B 2g@l2g: ~ 29x12.
nested@spanvm-11b$ 12g@12g:~$ cat evil.c
nested@spanvm-11b$ python vol.py -f /mnt/12dump --profile=LinuxUbujmain(void)
ntul204x64 plugin _name linux psaux | tac | grep evil
Volatility Foundation Volatility Framework 2.4

1000 1000 ./

network traffic

Guest infected
with KBeast

while(1)
sleep(1000);

nested@spanvm-11b$

* L1b: Running VMI
(Volatility)

nested@spanvm-11b$
nested@spanvm-11b$
nested@spanvm-11b$
nested@spanvm-11b$
nested@spanvm-11b$
nested@spanvm-11b$

L1b: Volatility

}

12g@12g:~$./evil &

[1] 883

129@l2g:~$ ps -e | grep evil
12gel29:~$ i

Example 2: Guest mirroring

* L1a runs Volatility

* L1b runs Guest Mirroring
* Periodically copy dirty guest pages
* Requires subscription on write events

e Guest runs iPerf

* ~800Mbps when mirrored every 12
seconds. Same as standard nested.

* “600Mbps every 1 second.

* 25% impact with high frequency dirty
page tracking

iPerf

Guest I I I
VCPUS

Incremental copy

to a remote node l

VM Guest
Introspection Mirroring
Service Service
Lla Lilb A

Memory Event

Subscription

Example 3: Live Hypervisor Replacement

* Replace hypervisor underneath a live Guest
* L1 runs a full hypervisor
* LO acts as a thin switching layer
Guest

* Replacement operation
e Attach new L1

e Detach old L1

. . old New
* 740ms replacement latency, including Hypervisor % Hypervisor
memory co-mapping

LO : Switches the L1 Hypervisor

e 70ms guest downtime
* During VCPU and I/O state transfer

Normalized Performance

Macrobenchmarks

- Single

250
200
150
100
50

CPU Utilization (%)

Nested

Span0

Spanl

[J Normalized Performance [l CPU Utilization

(a) Kernbench

Normalized Performance

- Single

LO L1 L2
Mem CPUs | Mem VCPUs | Mem VCPUs
Single 128GB 12 3GB 1 N/A N/A
Nested | 128GB 12 16GB 8 3GB 1
Span0 128GB 12 8GB 4 3GB lonLO
Spanl 128GB 12 8GB 4 3GB lonLl1
300

Guest Workloads

* Kernbench: repeatedly compiles the kernel
* Quicksort: repeatedly sorts 400MB data
* iPerf: Measures bandwidth to another host

Hypervisor-level Services

* Network monitoring (tcpdump)
* VMI (Volatility)

Span0

Spanl

] Normalized Performance [l CPU Utilization

(b) Quicksort

300
250
200
150
100
50

CPU Utilization (%)

Normalized Performance

Single

Nested Span0

Spanl

[] Normalized Performance [l CPU Utilization

(c) iPerf

300
250
200
150
100
50

CPU Utilization (%)

Normalized Performance

Macrobenchmarks

Guest Workloads

* Kernbench: repeatedly compiles the kernel
* Quicksort: repeatedly sorts 400MB data

LO L1 L2 * iPerf: Measures bandwidth to another host
Mem CPUs | Mem VCPUs | Mem VCPUs
Single | 128GB 12 | 3GB 1 N/A N/A Hypervisor-level Services
Nested 128GB 12 16GB 8 3GB 1 . .
* Network monitoring (tcpdum
Span0 | 128GB 12 | 8GB 4 | 3GB lonLoO g (tcpdump)
Spanl | 128GB 12 | 8GB 4 3GB lonLl * VMI (Volatility)
= 4300 - — 4300
120.95 . v s 29.8s . v
+1.1 4250 —~ c S 0.5 4250 —~ c
g EO -
oS o P05 o
150§ & 150§ &
4 = e _ = ©
100> & 11005 &
i > s i > s
{50 & E {50 & E
1 2 1 2
— ! 0 — 0 0 "
Single Nested Span0 Spanl Single Span0 Spanl Single Nested Span0 Spanl

[J Normalized Performance [l CPU Utilization

(a) Kernbench

] Normalized Performance [l CPU Utilization

[] Normalized Performance [l CPU Utilization

(b) Quicksort (c) iPerf

300
250
200
150
100
50

CPU Utilization (%)

Normalized Performance

Macrobenchmarks

- Single

Nested

Span0

Spanl

[J Normalized Performance [l CPU Utilization

(a) Kernbench

LO L1 L2
Mem CPUs | Mem VCPUs Mem VCPUs
Single 128GB 12 3GB 1 N/A N/A
Nested 128GB 12 16GB 8 3GB 1
Span0 128GB 12 8GB 4 3GB 1onLO
Spanl 128GB 12 8GB 4 3GB lonLl1
1300
1 g
Bl I o
:200 _5 E
f1s0g ¢&
4 = e
100> &
i >
{50 & E
[e]
| T =2

Guest Workloads

* Kernbench: repeatedly compiles the kernel
* Quicksort: repeatedly sorts 400MB data

* iPerf: Measures bandwidth to another host

Hypervisor-level Services

* Network monitoring (tcpdump)
* VMI (Volatility)

4300
\ 3
31.24s 250 5 S
0.4 i X £
j200 5 5
f1so0g &
1.8 8
{100 @ X
_ E ©
is0 O £
[e]
7 =2

- Single Nested

] Normalized Performance [l CPU Utilization

Span0 Spanl 0 0 Single Nested Span0 Spanl

[] Normalized Performance [l CPU Utilization

(b) Quicksort (c) iPerf

CPU Utilization (%)

Microbenchmarks

Single | Nested | Span
EPT Fault 2.4 2.8 3.3
Virtual EPT Fault - 23.3 24.1
Shadow EPT Fault - 3.7 4.1
Message Channel - - 53
Memory Event Notify - - 103.5

Low-level latencies in Span virtualization

Related Work

* User space Services
* Microkernels, library OS, uDenali, KVM/QEMU, NOVA

* Service VMs
* DomO in Xen, Xoar, Self-Service Cloud

* Nested virtualization
* Belpaire & Hsu, Ford et. al, Graf & Roedel, Turtles
* Ravello, XenBlanket, Bromium, DeepDefender, Dichotomy

* Span virtualization is the first to address multiple third-party hypervisor-level
services to a common guest

Summary: Span Virtualization

We introduced the concept of a multi-hypervisor virtual machine
 that can be concurrently controlled by multiple coresident hypervisors

Another tool in a cloud provider’s toolbox
* to offer compartmentalized guest-facing third-party services

Future work
 Faster event notification and processing
* Direct device assignment to L1s or Guest

* Possible to support unmodified L1s?
* Requires L1s to support partial guest control. Current L1s assume full control.

Code to be released after porting to newer KVM/QEMU

Questions?

Span
Nested P K Span

Backup slides

Comparison

Level of Guest Control Impact of Service Failure Additional
Virtualized | Partial or L0 Coresident Guests Performance
ISA Full Services Overheads
Single-level Yes Full Fails Fail All None
User space No Partial Protected | Protected Attached | Process switching
Service VM No Partial Protected | Protected Attached | VM switching
Nested Yes Full Protected | Protected in Attached | L1 switching + nesting
L1 user space
Span Yes Both Protected | Protected Attached | L1 switching + nesting

Continuous and Transient Control

Guest //' Guest

L1a L1b Guest 11
Continuous Control Transient Control

L1s always attached to guest L1 attaches/detaches from guest as needed

