Soft Updates Made Simple and Fast
on Non-volatile Memory

Mingkai Dong, Haibo Chen
Institute of Parallel and Distributed Systems,
Shanghai Jiao Tong University

@ ATC 17

Non-volatile Memory (NVM)

v" Non-volatile
v’ Byte-addressable
v High throughput and low latency

3D XPOINT"

JEDEC Compliant

INEXPENSIVE NON-VOLATILE

k.
\ -
¥
N § =
‘% \‘o\“ e / N -
o™ -
% . S < DIMM Interface
< otg > =
A\§ O
5 ot r
- S o 7 R,
> - / 3 b3) .
- \}#A “ /, o/ —t 1 ¥ 4
\)*‘ /~ Sy, | -‘A~

NVM File Systems (NVMFS)

Existing NVMEFS use journaling or copy-on-write for crash consistency
Synchronous cache flushes are necessary

Cache flushes are expensive!

Other options for crash consistency?

inode p=f===="""""1

Journal
Area

File System
Metadata

Existing N\
Synchrono
Cache flusl
Other opti

inode =

File System
Metadata

USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6-11, 1999

Soft Updates: A Technique for Eliminating
Most Synchronous Writes in the Fast Filesystem

Marshall Kirk McKusick

Author and Consultant

Gregory R. Ganger

Carnegie Mellon University

onsistency

Soft Updates

-
DRAM (Page cache) 1

Latest metadata in DRAM ’é

= Updated in DRAM with dependency tracked \I /I \E

v' DRAM performance

v" No synchronous disk writes
DISK

Consistent metadata in disks
= Persisted to disks with dependency enforced \1 /I N\
v Always consistent

v' Immediately usable after crash \
Traditional Soft Updates

Soft Updates

Update dependencies
block bitmap
= E.g., allocating a new data block
1. Allocate in bitmap w

2. Fill data in the block inode
3. Update pointer to the block

new
data block

P

Soft Updates Is Complicate

Delayed disk writes

bmsafemap
cylgrp_bp->b_dep = worklist Y
cylgrp_bp —
allocindir head [
inodedep head 97
new blk head 97
allocdirect head %
1vllindir_bp->b_dep Ibn14_bp->b_dep
j indirdep L allocindir allocindir
(S worklist ’%7 worklist worklist
state (see below) state (see below) state (see below)
saved data ptr deps list = deps list
safe copy bp dep bp dep bp
done head offset 8 in indir blk offset 12 in indir blk|
allocindir head new blkno new blkno
ATTACHED old blkno old blkno
freefrag freefrag

next allocindir

next allocindir

my indirdep j my indirdep
ATTACHED ATTACHED
DEPCOMPLETE COMPLETE

More complex dependencies

L

Auxiliary structures for each update

bmsafemap
[> cylgrp_bp->b_dep ——= worklist
cylgrp_bp
allocindir head %
inodedep head
new blk head %
allocdirect head ‘
Ibnl_bp->b_dep Ibn3_bp->b_dep
dinode ndiect block data block inodedep allocdirect allocdirect allocdirect
J worklist worklist worklist worklist
state (see below) state (see below) state (see below) state (see below)
e deps list deps list deps list = deps list
dep bp dep bp dep bp dep bp
dinode_bp>b.dp i bp>bdep Ty databpbodep hash list logical blkno 1 logical blkno 2 logical blkno 3
inodedep allocdirect indirdep allocindir filesystem ptr new blkno new blkno new blkno
‘worklist worklist —— worklist %’ worklist .
state (see below) state (see below) state (see below) state (see below) andC numbcr OId b]'kno OId bl'kno OId blkno
deps list 1 deps list saved data ptr 1 deps list nhnk dclta new SiZC new SiZC new SiZC
dep bp s dep bp safe copy bp sl dep bp N . . .
hash list logical blkno done head offset in indir blk saved inode ptr old size old size old size
.ﬂlesystem ptr new blkno allocindir head [— new blkno saved size freefra g freefra g freefra g
inode number old blkno ATTACHED old blkno
nlink delta new size freefrag pending ops head next allocdirect Q7 next allocdirect || next allocdirect
: . U -
saved inode ptr old size bmsafemap 7| next allocindir
saved size freefrag worklist my indirdep buf wait head my ll’lOdCde my 1nodedep my modedep
pending ops head 7] _next allocdirect cylgrpbp [ATTACHED inode wait head ATTACHED ATTACHED ATTACHED
buf wait head my inodedep allocindir head [~ DEPCOMPLETE DEPCOMPLETE
inode wait head ATTACHED inodedep head buffer update head COMPLETE
buffer update head [(= cyler_bp->b_dep new blk head incore update head
incore update head L head '
ATTACHED
DEPCOMPLETE ATTACHED

Figures from Soft Updates: A Technique for Eliminating Most Synchronous Writes in the Fast Filesystem, ATC '99

Soft Updates Is Complicated

Delayed disk writes

= Auxiliary structures for each operation

" More complex dependencies

Cyclic dependencies

= Rolling back/forward

)

inode block
(in page cache) inode block
inode #4 .F:]cc),lcljbeaftlé inode#4 | £1ush block to disks
inode #5 inode #5 |
inode #6 inode #6
inode #7 inode #7

inode Block Directory Block

inode #4 [&— A #4>

inode #5

node #6 F— —— #0>

Inode #7 <E, #7>

inode block inode block

inode #4 | Rollforward | inode #4
inode #5 Iinode #6 inode #5
inode #6 inode #6
inode #7 inode #7

Soft Updates Is Complicated

Delayed disk writes

= Auxiliary structures for each operation
" More complex dependencies

Cyclic dependencies

= Rolling back/forward

The mismatch between per-pointer-based dependency tracking
and block-based interface of traditional disks

Soft Updates Meets NVM

Soft Updates

v" No synchronous cache flushes

v' Immediately usable after crash

NVM: byte-addressable and fast

v Direct write to NVM without delays

v No false sharing => no rolling back/forward
v" Simple dependency tracking/enforcement

SoupFS

A simple and fast NVMFS derived from soft updates

= Hashtable-based directories
= No false sharing

" Pointer-based dual views
= No synchronous cache flushes

= Semantic-aware dependency tracking/enforcement
= Simple dependency tracking/enforcement

Get the best of both Soft Updates and NVM

Overview

Design & Implementation

» Hashtable-based directories

" Pointer-based dual views

= Semantic-aware dependency tracking/enforcement
Evaluation

Conclusion

Overview

Design & Implementation
= Hashtable-based directories

Block-based Directories

Block-based file systems usually use block-based directories
" False sharing

X Cyclic dependency el
X Rolling back/forward -

= Slow access indirect zexel512] |
. Directory block
X Linear scan inode o

I+f.dir| 12 IJ

|.TxT|32 |2

Hashtable-based Directories

Optimized for cache lines Dii;e;;:ry Buckets
v No false sharing o {1 f2f3f4].]

v No cyclic dependency

Efficient access

Consistent
Next

Latest
Next

inode
Pointer

Filename
Pointer

v No linear scan

Filename

Overview

Design & Implementation

= Pointer-based dual views

Dual Views

.
Latest view in page cache DRAM (Page cache)

Consistent view in disks \ ‘

Dual views
" Eliminate synchronous writes DISK
" Provide usability after crash \ I:

Traditional Soft Updates

Dual Views

Latest-view-tnpage-—eache | DRAM-{Rage-cache)

Consistent view in giskssNVM \E |

Latest view?

Another copy of metadata in DRAM (?E?NVM

[Challenge: How to present latest view efficiently? I

X Unnecessary synchronizations L

Soft Updates on NVM

Pointer-based Dual Views

p
Reuse data structures in both views DRAM

Distinguish views by different pointers/structures k\E/ [\.

\&7<E\

Soft Updates on NVM

Pointer-based Dual Views

Reuse data structures in both views
Distinguish views by different pointers/structures

Data Structures In Consistent View In Latest View

inode SoupFS inode VFS inode

dentry consistent next pointer latest next pointer
hash table bucket latest bucket if exists

B-tree root/height in SoupFS inode root/height in VFS inode

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM

inode [Updates to NVM w/o persistence guarantee
o]]2]sf4f.]

J 1 Persisted in NVM

orecrory | [Py I\ Ll T 1 —=>1e] [(Al [] |

_VFS Filename inode Latest Consistent
inode Next Next

Latest View
>Consistent View
L J

Pointer-based Dual Views

[] Volatile in DRAM

) Buckets

inode [Updates to NVM w/o persistence guarantee
o]]2]sf4f.]

j [1 Persisted in NVM

orecrory | [Py I\ Ll T 1 —=>1e] [(Al [] |

_VFS Filename inode Latest Consistent
inode Next Next

Directory

Latest View

]
> create E > File E
Consistent View
L J

Pointer-based Dual Views

[] Volatile in DRAM

) Buckets

inode [Updates to NVM w/o persistence guarantee
o]]2]sf4f.]

j [1 Persisted in NVM

[mrectory] lP|I/|,:|\\|>C| L1 el [] Plal 1| |

Directory

_VFS Filename inode Latest Consistent
inode Next Next
\
\ Latest View
\

\ |atest Buckets]
> create E \‘ T T T > File E

Consistent View
L J

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM
mode [] Updates to NVM w/o persistence guarantee
| | | 2 | ?’Ek [] Persisted in NVM

D.rectory AN e [[Pial [] |

VFS F|Iename mode Latest ConS|stent
inode Next Next

\
\\ | E | | | | Latest View

\ Latest Buckets

> create E \‘ T T T >FiIIeE<

Consistent View
L J

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM
mode [] Updates to NVM w/o persistence guarantee
| | | 2 | ?’Ek [] Persisted in NVM

D.rectory AN e [[Pial [] |

VFS F|Iename mode Latest ConS|stent
inode Next Next

\
\\ ;YI E | | | | Latest View
>

Consistent View
L J

\ \ Latest Buckets ,
> create E 2 |
3

Tl |

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM
mode [] Updates to NVM w/o persistence guarantee
| | | 2 | ?’Ek [] Persisted in NVM

D.rectory AN e [[Pial [] |

VFS F|Iename mode Latest ConS|stent
inode Next Next

\
\\ ;YI . | | | | Latest View

— | ied) (Fies) [ed (e (el

Consistent View
L J

\ \ Latest Buckets ,
= createE zl
3

Tl |

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM
mode [] Updates to NVM w/o persistence guarantee
| | | 2 | ?’Ek [] Persisted in NVM

D.rectory AN e [[Pial [] |

VFS F|Iename mode Latest ConS|stent
inode Next Next

\
\\ ;YI . | | | | Latest View

— | ien) (%) [ed () (el

Consistent View
L J

\ Latest Buckets ,
= createE zl
3

> unlink B \‘ l l l

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM
mode [] Updates to NVM w/o persistence guarantee
| | | 2 | ?’Ek [] Persisted in NVM

D.rectory AN

VFS F|Iename mode Latest ConS|stent
inode Next Next

\
\\ ;YI . | | | | Latest View

\ Latest Buckets ,
= createE zl
3

> unlink B \‘ l l l

L -
~—-———_——

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM
mode [] Updates to NVM w/o persistence guarantee
| | | 2 | ?’Ek [] Persisted in NVM

D.rectory AN

VFS F|Iename mode Latest ConS|stent
inode Next Next

\
\\ ;YI . | | | | Latest View

\ \ Latest Buckets ,
= createE zl
3

= unlink B \‘ l l l

L -
~—-———_——

Pointer-based Dual Views

[] Volatile in DRAM
[Updates to NVM w/o persistence guarantee
[] Persisted in NVM

inode

Buckets

Directory Plll s I--- sl | | Al L1
VFS Filename inode latest Consistent ' S~ = _ _ -
inode Next Next \ - ——

\

\\ /1| e | | | | Latest View

— ED T IR

Consistent View
File Al [File Bl |File C},(File D)

\ \ Latest Buckets ,
= createE zl
3

= unlink B \‘ l l l

Pointer-based Dual Views

Buckets [] Volatile in DRAM
lnode [] Updates to NVM w/o persistence guarantee

m“nn- [1 Persisted in NVM

Directory Enn“ --- B | | |

VFES

' Filename inode Latest Consistent
inode Next Next

Al 1L
\-_-—-_'—‘——’

E--- Latest Vlew

\ Latest Buckets
cresteE T T 15T T B

= unlink B Consistent View
L J

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM
mode [] Updates to NVM w/o persistence guarantee
| | | 2 | ?’Ek [] Persisted in NVM

D.rectory AN

VFS F|Iename mode Latest ConS|stent
inode Next Next

\
\\ ;YI . | | | | Latest View

\ \ Latest Buckets ,
= createE zl
3

= unlink B \‘ l l l

L -
~—-———_——

Pointer-based Dual Views

Directory Buckets [] Volatile in DRAM
mode [] Updates to NVM w/o persistence guarantee
| | | 2 | ?’Ek [] Persisted in NVM

D.rectory AN

VFS F|Iename mode Latest ConS|stent
inode Next Next

\
\\ ;YI c | | | | Latest View

\ \ Latest Buckets ,
" createE zl
3

= unlink B \‘ l l l

L -
~—-———_——

Pointer-based Dual Views

Dl.recto ry Buckets
inode

j o |1 f2]3]4]..]

[] Volatile in DRAM
[Updates to NVM w/o persistence guarantee
[] Persisted in NVM

Directory AN
VFS FiIen/ame inolde Lat'est Cons\istent
inode Next Next
v \
\
\ el |

L -
~—-———_——

Latest View

* createE 2
= unlink B \‘ l l |3

\ Latest Buckets ,

| (ien) (%) (e d (D) e

Consistent View

<

o
' (feA) (Fie) (Fied) (FeD) (Fie) |

Pointer-based Dual Views

Dl.recto ry Buckets
inode

j o |1 f2]3]4]..]

[] Volatile in DRAM
[Updates to NVM w/o persistence guarantee
[] Persisted in NVM

Directory 2N
VFS / I 1 \

_ Filename inode Latest Consistent
inode Next Next

: \

\ Al ||

\ \ Latest Buckets ,
" createE zl
3

= unlink B \‘ l l l

—-—
~—-———_——

Latest View
B
>

Consistent View

o
(e (%) (e [Fied) (ied) |

<

Pointer-based Dual Views

Dl.recto ry Buckets
inode

j o |1 f2]3]4]..]

Directory 2N
VFS / I 1 \

_ Filename inode Latest Consistent
inode Next Next

: \

[] Volatile in DRAM
[Updates to NVM w/o persistence guarantee
[] Persisted in NVM

EENpOEEE _ AEEN

\ Al ||

* createE 2
= unlink B \‘ l l |3

\ Latest Buckets ,

Latest View
B
>

Consistent View

<

o
(e (%) (e [Fied) (ied) |

Pointer-based Dual Views

Dl.recto ry Buckets
inode

j o |1 f2]3]4]..]

[1T1J

Directory 2N
VFS / I 1 \

_ Filename inode Latest Consistent
inode Next Next

: \

[] Volatile in DRAM
[Updates to NVM w/o persistence guarantee

[] Persisted in NVM
[TT]

\ Al ||

* createE 2
= unlink B \‘ l l |3

\ Latest Buckets ,

Latest View
> <

Consistent View

Dir
File ¢J (File DJ [File E] |

L-m

Pointer-based Dual Views

p
Reuse data structures in both views DRAM

Distinguish views by different pointers/structures k

v Eliminate synchronous writes .
v’ Provide usability after crash NVM

v No double write

v’ Little space overhead L

Soft Updates on NVM

Overview

Design & Implementation

= Semantic-aware dependency tracking/enforcement

Auxiliary structures for each updates

1vllindir_bp->b_dep j

Dependency Tracking

bmsafemap
cylgrp_bp->b_dep = worklist %
cylgrp_bp —
allocindir head [
inodedep head 97
new blk head 97
allocdirect head ’%
Ibn14_bp->b_dep
indirdep allocindir allocindir
(S worklist worklist worklist
state (see below) state (see below) state (see below)
saved data ptr deps list = deps list
safe copy bp dep bp dep bp
done head offset 8 in indir blk offset 12 in indir blk|
allocindir head new blkno new blkno
ATTACHED old blkno old blkno
freefrag freefrag
next allocindir next allocindir
my indirdep my indirdep
ATTACHED j ATTACHED
DEPCOMPLETE COMPLETE

bmsafemap
F cylgrp_bp->b_dep ——= worklist
cylgrp_bp
allocindir head %
inodedep head
new blk head _Q7
allocdirect head l
Ibnl_bp->b_dep 1bn3_bp->b_dep
dinode ndiect block data block inodedep allocdirect allocdirect allocdirect
J worklist worklist worklist worklist
state (see below) state (see below) state (see below) state (see below)
e deps list % deps list deps list deps list Q7
dep bp — dep bp dep bp dep bp —
dinode_bp>b.dp i bp>bdep Ty databpbodep hash list logical blkno 1 logical blkno 2 logical blkno 3
L inodedep allocdirect indirdep allocindir filesystem ptr new blkno new blkno new blkno
‘worklist worklist — worklist worklist .
state (see below) state (see below) state (see below) Q7 state (see below) mOde number OId bl'k‘no OId b]'kno OId blkno
deps list 1 deps list saved data ptr 1 deps list nlmk delta new SiZC new SiZE new SiZC
dep bp el dep bp safe copy bp el dep bp N . A)
hash list logical blkno done head offset in indir blk saved inode ptr old size old size old size
.ﬁlesys(em ptr new blkno allocindir head [new blkno saved size freefr: ag free frag freefr: ag
inode number old blkno ATTACHED old blkno
nlink delta new size freefrag pending ops head next allocdirect _:L/ next allocdirect next allocdirect
. - U -
saved inode ptr old size bmsafemap 7 next allocindir
ved oo frectrag workise | my indirdep buf wait head my inodedep my inodedep my inodedep
pending ops head | pextallocdirect |3, cylgrpbp [ATTACHED inode wait head ATTACHED ATTACHED ATTACHED
buf wait head my inodedep allocindir head
inode wait head ATTACHED inodedep head buffer update head DEPCOMPLETE D%PSS:I[};LTI;TE
buffer update head [? cylgp_bp->b_dep new blk head incore update head
incore update head L llocdirect head '
ATTACHED
DEPCOMPLETE ATTACHED

40

Dependency Tracking

Auxiliary structures for each updates

The semantic gap between
the page cache (where enforcement happens)
and the file system (where tracking happens)

After removing page cache, SoupFS involves semantics in dependency
tracking/enforcement

Semantic-aware Dependency Tracking

Track semantic operations with complementary information
" Enough for dependency enforcement

Operation Type Complementary Information (pointers/integers)

diradd added dentry, source directory*, overwritten inode*
dirrem removed dentry, destination directory*

sizechg the old and new file size

attrchg nothing

Information tagged with * is for rename operation.

Semantic-aware Dependency Tracking

Track semantic operations with complementary information
" Enough for dependency enforcement
Operations are stored in operation list of each VFS inode

()
[dirty inode list]=) VFS VFS VFS
inode inode / inode
list next list next list next

operation operation operation
list list list

list next

operation type | | l
Complimentary I I I | G

information

Semantic-aware Dependency Enforcement

Persister daemons traverse the dirty inode list in background

= persist each operation from the latest view to the consistent view
with respect to update dependencies

()
[dirty inode list]=) VFS VFS VFS
inode inode / inode
list next list next list next

operation operation operation
list list list

list next

operation type | | l
Complimentary I I I | G

information

Overview

Evaluation

Evaluation Setup

Platform

= |ntel Xeon E5 server with two 8-core processors
= 48 GB DRAM and 64 GB NVDIMM

File Systems

= SoupkFS, PMEFS, NOVA, Ext4-DAX, Ext4
NVM Write Delay Simulation

= ndelay() after c1flush
Benchmarks

= Micro-benchmarks: 100 iterations of 10* create/unlink/mkdir/rmdir

= Filebench and Postmark

20

=
(9))

=
o

Latency (us/op)

Micro-benchmark Latency

Inefficient Directory Organization

7.7 O Ext4

B Ext4-DAX
B PMFS

B NOVA

@ SoupFS

P

create w \ mkdir‘ rmdir

Lowest Latency

CDF

0.8

0.6

0.4

0.2

EXT4
e==Ext4-DAX
e==PMFS
e\ OVA
e=SoupFS

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30

Latency (us)

47

Latency(us)

D O N
o U1 O

= U1
Ul n

Sensitivity to NVM Write Delay

Create Unlink
_ 20
3 <*¢<PMFS
HPMFS -
© 16 | -e=NOVA
(V]
® " -4-SoupFS
M™~250%
--NOVA 8
«SoupFS _—— P~200%|] | | O L o o e e e e e e e e oo \ A
4
= —* * * e A A A
0
0 200 400 600 800 0 200 400 600 800
Delay (ns) Delay (ns)

No effect

48

350

300

N
Ul
o

Throughput (MB/s)
BN
=)
o o

100

50

Postmark & Filebench

Postmark
O Ext4
B Ext4-DAX M50%
@ PMFS
@ NOVA
@ SoupFS

Read

Write

1200

)

s/
[T
o
o
o

Throughput (x1000 op
o)}
=
=]

Fileserver-1K

Ext4

<¢Ext4-DAX
-®-PMFS
--NOVA
=2=SoupFS

ads

PR RS E DP9 YLt adpdoD

Overview

Conclusion

Conclusion

Soft updates is complicated due to the mismatch between
per-pointer-based dependency tracking and block-based interface of
traditional disks

We design and implement SoupFS
v Hashtable-based directories
v Pointer-based dual views
v’ Semantic-aware dependency tracking/enforcement

Soft updates can be made simple and fast on NVM

Thanks & Questions!? ;-)

