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Modern Web Applications

• Ubiquitous, important, diverse
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Users Expect Performance

• Diversity of app ecosystem makes this hard

• Improving web app performance is not trivial

• Application caches are aggressively deployed for this

• But can hit rates be improved?



Application Caching on the Web
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Cache Performance is About Eviction

• For long-tailed workloads, you CANNOT cache everything

• Hit rate (and miss rate) will depend on what you kick out

• Ideally – kick out things that are least likely to be requested
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Tailoring Cache Eviction

• Web apps are different than disk or CPU caches:

• Size and cost are important!

• Request patterns are different

• Two goals of a tailored eviction strategy:

• Tailor to web-specific request distributions

• Tailor to the varying needs of different app settings
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Traditional Caching Strategies Have Issues

• LRU and other recency based approaches:
• Perform generally very well, but on stable, memoryless distributions, 

outperformed by frequency strategies

• LFU:
• Problems with traditional implementation (evict item with fewest hits)

• Punishes new items

• Old items may survive even after dropping in importance
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Many Variants to Improve These Strategies

• GreedyDual incorporates cost with recency

• k-LRU uses multiple LRU queues (ARC is a self-balancing approach)

• Some even model this as an optimization problem



Many Variants to Improve These Strategies

• GreedyDual incorporates cost with recency

• k-LRU uses multiple LRU queues (ARC is a self-balancing approach)

• Some even model this as an optimization problem

Problem: All limited by use of an eviction data structure!



Key Insight:

Decouple item priorities 
from eviction data structures 



But How to Evict? Use Random Sampling

• We can use random sampling for eviction

• Now, item priorities do not necessarily need to be tied to a particular 
data structure

• This opens up the design space for prioritization



Why Now?

• Systems such as Redis already use random sampling
• Use for efficiency and simplicity of implementation

• Approximates LRU

• Theoretical justification already exists (Psounis and Prabhakar)

• However, no one has proposed a strategy that leverages this flexibility



Hyperbolic Caching

• Flexible caching scheme

• Define priority function and do lazy evaluation with sampling to evict

• Focus on defining how important an object is, not data structures!
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Hyperbolic Caching

• We define priority function

𝑝𝑟 𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠

𝑡𝑖𝑚𝑒 𝑠𝑖𝑛𝑐𝑒 𝑖 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑐𝑎𝑐ℎ𝑒

• We allow for many different variations on this priority scheme
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Frequency captures 
independent draws 

property of workloads

Addresses problems of 
LFU by measuring 
relative popularity



Implementing Hyperbolic Caching

• Traditional eviction uses data structures for ordering

• Hyperbolic caching creates item re-orderings

• Example:

Item requests: A A B C C

A and B reordered when unrelated item is requested!

We can only do this because of random sampling!

16



Performance on Static Workload

• Items sampled from a static zipfian popularity distribution
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Performance on Memcachier Traces 

• Cache sizes chosen by app developers
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Tailoring Caching for App Needs



Tailoring Hyperbolic Caching

• Item costs

• Items may impose different CPU or DB load on misses

• Item sizes affect per-item hit rate

• Expiration times

• Apps can give expirations to prevent staleness

• Item classes

• Items may have related costs, and should have grouped costs
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𝑝𝑟′ 𝑖 = 𝑐𝑜𝑠𝑡𝑖 ∙ 𝑝𝑟(𝑖)

𝑝𝑟′ 𝑖 = (1 − 𝑒𝛼∙(𝑡𝑖𝑚𝑒 𝑡𝑖𝑙𝑙 𝑒𝑝𝑖𝑟𝑒𝑠)) ∙ 𝑝𝑟(𝑖)

𝑝𝑟′ 𝑖 = 𝑐𝑜𝑠𝑡(𝑔𝑟𝑜𝑢𝑝𝑖) ∙ 𝑝𝑟(𝑖)



Cost-Aware Caching: State of the Art

• GreedyDual is well-known approach for incorporating cost

• However, implementation is not trivial
• LRU->GD requires changing the cache’s data structures

• HC -> HC+Cost just adds metadata and redefines priority function

• Furthermore, GD suffers on web workloads, because it is a recency
based approach



Cost-Aware Perf. on Memcachier Traces 
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Cost Classes

• Measure moving average of item costs over the class

• Cost of class can be updated while item A in cache

• Updating whole class very easy in our scheme

• Example use cases:
• Class of items shares the same backend and related load
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𝑝𝑟′ 𝑖 = 𝑐𝑜𝑠𝑡(𝑔𝑟𝑜𝑢𝑝𝑖) ∙ 𝑝𝑟(𝑖)



Dealing with Backend Load

• Items are requested from two different backends

• At time t=120, one server is stressed
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Hyperbolic Caching Related Work

• Recent Application Cache Eviction Work
• RIPQ – implementing size-awareness on flash

• GDWheel – fast implementation of GD

• CliffScaler – improving the LRU approx. of Memcached

• Web Proxy Caching
• Many different projects demonstrating performance benefits of GD

• Hyperbolic Caching’s prioritization outperforms these on our workloads
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Conclusion

• Focusing on prioritizing items, hyperbolic caching improves caching 
performance on web-like workloads

• The scheme allows for a multitude of easily constructed variants

• We demonstrate performance as good as competitive baselines, and in 
many cases much better

• Fork us! Our Redis prototype and simulation code are at:
github.com/kantai/hyperbolic-caching


