SPIN: Seamless Operating System Integration of Peer-to-Peer DMA Between SSDs and GPUs

Shai Bergman | Tanya Brokhman | Tzachi Cohen | Mark Silberstein

Summary

• Summary Background Observations Objective SPIN Conclusion

• You are here

What do we do?

Enable efficient file I/O for GPUs

Why?

Support diverse I/O workloads involving GPUs

How?

Make P2P a first class citizen within the file I/O stack

Results

Better throughput Standard file API cross-GPU portability

Background

Fast data transfers Data resides in SSD Bounded by extra copy?

Summary

• Background

Observations

Objective

SPIN

Conclusion

• You are here

CPU mediated data transfers introduce extra latency with lower throughput

CPUIO - CPU mediated transfer

Background

Summary

• Background

Observations

Objective

SPIN

Conclusion

• You are here

Eliminates redundant copies

- **GPU-SSD** Architectures,"
- Heterogeneous Computing and Storage Resources,"
- computing,"
- [5]"Project Donard." https://github.com/sbates130272/donard, 2015.

GPU vendors support P2P

[1] J. Zhang, D. Donofrio, J. Shalf, M. T. Kandemir, and M. Jung, "NVMMU: A Non-volatile Memory Management Unit for Heterogeneous

[2] H.-W. Tseng, Y. Liu, M. Gahagan, J. Li, Y. Jin, and S. Swanson, "Gullfoss: Accelerating and Simplifying Data Movement Among

[3] M. Shihab, K. Taht, and M. Jung, "GPUDrive: Reconsidering Storage Accesses for GPU Acceleration,"

[4] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and S. Swanson, "Morpheus: creating application objects efficiently for heterogeneous

Observations

- Summary Background
- Observations
 - Objective

SPIN

Conclusion

• You are here

CPUIO - CPU mediated transfer

**data is not preloaded to the page cache

Block size

Short sequential reads: P2P ~33x **Slower** than CPUIO?

Observations

Summary Background

• Observations

Objective

SPIN

Conclusion

• You are here

No Page Cache Integration

Hard to utilize

No file consistency

Can read stale data | Requires explicit flushes to SSD

What went wrong? **P2P bypasses the kernel!**

No read ahead | Cannot utilize P\$ for data reuse

Non-standard API | No misaligned accesses | LVM/MDADM incompatible

Objective

- Summary
- Background
- Observations
- Objective SPIN
 - Conclusion

• You are here

What do we want? Regular file I/O to GPU memory

int fd;

• • •

//open file

• • •

SPIN: Contributions

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

Standard File API • Underlying block device support (RAID, LVM)

Use

 Activate P2P when beneficial

Data Consistency + POSIX file semantics

Keep POSIX file semantics + data consistency, even when CPU + GPU work on the same file

Combine Page Cache and P2P

Interleave system memory and SSD when possible

GPU Read Ahead

Activate read ahead mechanism when determined beneficial. Nested page cache within CPU memory for GPU

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

From Compatible SSD? **Destined to GPU?** Part of a sequential read? Data resides in page cache?

Summary

Background

Observations

Objective

• SPIN

Conclusion

Summary

Background

Observations

Objective

• SPIN

Conclusion

Summary

Background

Observations

Objective

• SPIN

Conclusion

Summary

Background

Observations

Objective

• SPIN

Conclusion

Summary

Background

Observations

Objective

• SPIN

Conclusion

Summary

Background

Observations

Objective

• SPIN

Conclusion

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

Transfer time from P\$ and SSD P2P vs request size

Transferring data from P\$ is faster!

Request Size [KiB]

Sometimes the requested data resides in the P\$ e.g due to previous usage of the data by CPU

pread64(fd,gpu dest,5*4096,0); //5 pages of 4KiB

P-cache checker

- Summary Background
- **Observations**
- Objective
- SPIN
 - Conclusion
- You are here

pread64 (fd, gpu destk, 5*4096, 0); //5 pages of 4KiB

- Summary
- Background
- **Observations**
- Objective
- SPIN
 - Conclusion

- Summary
- Background
- **Observations**
- Objective
- SPIN
 - Conclusion

• You are here

pread64(fd,gpu dest,5*4096,0); //5 pages of 4KiB

Fine grained interleaving is a bad idea!

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

Page resides in SSD only Page resides in SSD and P\$

3 transfers of 4KiB via P2P: 120.3us

- pread64(fd,gpu dest,5*4096,0); //5 pages of 4KiB

Single transfer of 20KiB via P2P: 74.3us

Fine grained interleaving = poor performance!

SSDs:

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

- Short IO requests are less efficient (low parallelism) - Invocation overhead per request

Optimization Problem: Find the transfer schedule to minimize transfer time

- Summary
- Background

Observations

Objective

• SPIN

Conclusion

- To solve the problem & get an optimal schedule we need:
- $T_{p2p}(s)$ P2P transfer time for a given request size
- $T_{P\$}(s)$ P\$ transfer time for a given request size
- We model the SSD and RAM performance characteristics: - Assume P2P transfer time as piece-wise linear - Assume RAM transfer time as linear

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

Solution is polynomial in number of blocks Costly to calculate for every transfer

Page resides in SSD only Page resides in SSD and P\$

Calculate:

We apply a greedy heuristic: - Examine every 3 consecutive data chunks

> Chunk #n+1 Chunk #n+2 Chunk #n

 $T_{p2p}(|n| + |n + 1| + |n + 2|)$ \mathcal{VS} . $T_{p2p}(|n|) + T_{P\$}(|n+1|) + T_{p2p}(|n+2|)$ **ACSL - Technion** 23

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

Solution is polynomial in number of blocks Costly to calculate for every transfer

We apply a greedy heuristic: - Examine shunks Greedy Heuristic is only 1.6% slower than optimal scheduling Page reside

Page resides

Calculate:

 $T_{p2p}(|$

$$T_{p2p}(|n| + |n + 1| + |n + 2|)$$

 $vs.$
 $n|) + T_{P\$}(|n + 1|) + T_{p2p}(|n + 2|)$
ACSL - Technion 24

SPIN: Implementation: P2P & P\$ Transfers

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

P2P: Address tunneling mechanism P\$: Memcpy from P\$ to **GPU** mapped memory

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

SPIN is implemented as a kernel module, patched NVME module & an LD_PRELOAD library No kernel modifications are required

System Specs:

- Intel P3700 NVME SSD
- AMD Radeon R9 Fury & NVIDIA Tesla K40c
- Ubuntu + Linux kernel 3.19
- Intel Core i7-5930K (6 Phys Cores) & X99 Chipset
- 24GB DDR4 RAM

- Summary
- Background

Observations

Objective

• SPIN

Conclusion

• You are here

- Sequential reads (including software RAID)
- Random reads/writes
- Effects of P\$ residency on read throughput
- Effects CPU & I/O stress on read throughput
- **Application Benchmarks**
 - Aerial imagery rendering
 - GPU accelerated log server
 - Image collage utilizing GPUFS

- We have evaluated the following:
- Threaded IO (TIOtest) Benchmark (1-4 threads):

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

Effect of P\$ on Read Throughput Potential performance gains for producer-consumer workloads All data in P\$, No data in P\$, less than 5% less than 5% -SPIN -P2PDMA -CPUIO overhead overhead 120 100 80

Relative throughput % 60 40 20 0

> 100 50 70 80 0 10 20 30 40 60 90

*512B reads

% of file in page cache

- Summary
- Background
- **Observations**
- Objective
- SPIN
 - Conclusion

• You are here

GPU Accelerated Log Server

- Store a log into SSD
- Analyze log using GPU acceleration for string matching
- Similar to fail2ban

Real time configuration:

- Log arrives to server
- Server stores logs in SSD
- GPU analyzes logs by reading file

Offline configuration:

- Log is already in SSD
- GPU analyzes logs by reading file

- Summary
- Background
- **Observations**
- Objective
- SPIN
 - Conclusion

• You are here

GPU Accelerated Log Server

- Store a log into SSD
- Analyze log using GPU acceleration for string matching
- Similar to fail2ban

Real time configuration: - Log arrives to server

logs in SSD We want our application to logs by reading file work efficiently in any configuration ation:

- Log is already in SSD

- GPU analyzes logs by reading file

Summary

Background

Observations

Objective

• SPIN

Conclusion

• You are here

Real Time configuration

Data resides in p\$ and SSD SPIN reads data from P\$

GPU Accelerated Log Server

Offline configuration

Data resides in SSD only SPIN utilizes P2P

SPIN: Conclusion

- Summary
- Background
- Observations
- Objective
- SPIN
- Conclusion
 - You are here

- SPIN seamlessly integrates P2P as a first class citizen
 - into the file I/O stack
- SPIN utilizes several mechanisms to speed up data
 - transfers **transparently**
- With SPIN, the same code performs well under all
 - setups

Thank you! github.com/acsl-technion/spin

