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Translation Lookaside Buffer (TLB)

Virtual Address

_

» PGD

»[ PUD |+

’PMD] -=-- VASPA -
o| PTE |- — -

Page-Tables g

- TLB = cache for virtual to physical address translations

J— ald




TLB Coherency

incoherent incoherent

4 TLB »I_ TLB

Hardware does not maintain TLBs coherent
The problem is left for software (OS)

vmware



Local TLB Flushes and Remote TLB Shootdowns

Pl |
OS
P
PTE Done
change
local local
| flush flush)
PTEs | TLB | | TLB |
\ J
|
TLB shootdown

vmware



When do TLB Flushes Occur?

Application initiated OS initiated
munmap() NUMA migrations
Copy-on-write Memory compaction
msync() Memory deduplication
mprotect() Memory reclamation
madvise() Memory balloon
migrate_pages() Background dirty-pages

flush

Faster storage = TLB overheads are more apparent
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Existing Solutions
Hardware [Teller’90, Villavieja'11, Li'13]

Software (commodity OSes)
Batching [Uhlig’03]
Limit flushes to cores that use the address-space
Trade-off between full and individual PTE flushes

Software (academic)
Explicit software control [Boyd-Wickizer'10, Tene'11]
Replicated paging hierarchy [Clements’13, Gerofi’'13]
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Replicated Paging Hierarchy
[Clements’13, Gerofi’13]
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Page-fault on each CPU that accesses a PTE
Memory overheads
Runtime overheads: managing multiple tables
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Insight: Use PTE Access-Bit

PTE: page frame number ‘A‘ permissions

Set by hardware, cleared by software

Used for OS memory reclamation decisions
Set when a page is accessed

“These flags are provided ... to manage the transfer of pages
... into and out of physical memory.” (Intel SDM)

Insight: can be used for TLB invalidation decisions
Set when a PTE is cached
“Whenever the processor uses a PTE as part of address

translation, it sets the accessed flag...” (Intel SDM)



Our System

Flush decisions based on PTE access-bit

Software solution (x86)
Exploiting the full potential requires simple hardware changes

Prevent common unnecessary TLB shootdowns
Long-lived idle mappings
Short-lived private mappings

Some false positives
Unnecessary flushes
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Long-Lived
Idle Mappings

CLOCK Algorithm

[Carr and Henessy ‘81]
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Avoiding Flush of Long Lived Idle PTEs
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TLB Version Tracking (1)

Address Space
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TLB Version Tracking (2)
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TLB Version Tracking (3)

PTE SPTE Address Space
A-bit version # version #
0 5 7
. version
PTE unmap and flush: CPU bitmap
If PTE.A == 0 and 101 1
SPTE.ver + 1 < AS.ver

Then avoid TLB flush
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Short Lived Private Mappings

read
mmap() access mumap()
1 1 1 time
— S
page-fault PTE cleared
= PTE set = TLB flush
usually same core

insert PTE to PTE.A==0? =mmp local
TLB with flush
PTE.A=0
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Evaluations

Prototype based on Linux 4.5

Baseline configured to avoid shootdown cost
Linux version that uses TLB flushes batching
Using efficient multicast IPI delivery

48-cores, 2-socket server

Our system denoted as ABIS:
Access-Based Invalidation System
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Apache TLB Shootdowns
(Short-Lived Private Mappings)
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Apache Performance
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PBZIP2 -

TLB shootdowns

(Long-Lived Idle Mappings)
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PBZIP2 Performance
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Microbenchmarks: VMScale

SUMOP]O0YS g1 pazifewsou

@ ©
~— o o

A

< !
o o o
I

1

bas-i-uoue
Jw-ouAsw
peal-deww
. JW-puel-M09
=
08
-ES Jw-bas-moo
=5
2@
— — o a1elbiw
G
©
o

o
awinunJ pazijewJou

vmware



Conclusions

Access-bit tracking can often prevent most TLB
shootdowns:

Long-lived idle PTEs
Short-lived private PTEs

Exploit memory coherency to check if TLB is cached

CPUs should allow more control over the TLB
Insertion of PTEs directly to the TLB
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