Optimizing the TLB Shootdown
Algorithm with Page Access Tracking

Nadav Amit — VMware Research Group

Translation Lookaside Buffer (TLB)

Virtual Address

_

» PGD

»[PUD |+

’PMD] -=-- VASPA -
o| PTE |- — -

Page-Tables g

- TLB = cache for virtual to physical address translations

J— ald

TLB Coherency

incoherent incoherent

4 TLB »I_ TLB

Hardware does not maintain TLBs coherent
The problem is left for software (OS)

vmware

Local TLB Flushes and Remote TLB Shootdowns

Pl |
OS
P
PTE Done
change
local local
| flush flush)
PTEs | TLB | | TLB |
\ J
|
TLB shootdown

vmware

When do TLB Flushes Occur?

Application initiated OS initiated
munmap() NUMA migrations
Copy-on-write Memory compaction
msync() Memory deduplication
mprotect() Memory reclamation
madvise() Memory balloon
migrate_pages() Background dirty-pages

flush

Faster storage = TLB overheads are more apparent

vmware la

Existing Solutions
Hardware [Teller’90, Villavieja'11, Li'13]

Software (commodity OSes)
Batching [Uhlig’03]
Limit flushes to cores that use the address-space
Trade-off between full and individual PTE flushes

Software (academic)
Explicit software control [Boyd-Wickizer'10, Tene'11]
Replicated paging hierarchy [Clements’13, Gerofi’'13]

vmware ‘ ‘

Replicated Paging Hierarchy
[Clements’13, Gerofi’13]

Page-Tables Page-Tables

17SP 7] Pub PSP T | pup |

PMD ” PMD
PTE PT
| i

1

page fault=> | P

Page-fault on each CPU that accesses a PTE
Memory overheads
Runtime overheads: managing multiple tables

vmware M

Insight: Use PTE Access-Bit

PTE: page frame number ‘A‘ permissions

Set by hardware, cleared by software

Used for OS memory reclamation decisions
Set when a page is accessed

“These flags are provided ... to manage the transfer of pages
... into and out of physical memory.” (Intel SDM)

Insight: can be used for TLB invalidation decisions
Set when a PTE is cached
“Whenever the processor uses a PTE as part of address

translation, it sets the accessed flag...” (Intel SDM)

Our System

Flush decisions based on PTE access-bit

Software solution (x86)
Exploiting the full potential requires simple hardware changes

Prevent common unnecessary TLB shootdowns
Long-lived idle mappings
Short-lived private mappings

Some false positives
Unnecessary flushes

vmware ‘ ‘

Long-Lived
Idle Mappings

CLOCK Algorithm

[Carr and Henessy ‘81]

vmware

pointer

advance clock i‘

l

A-bit

test and clear

schedule
page for
cleaning

Set

i

TLB flush
(up to 9us)

TLB flush
(up to 9us)

replace
page

Avoiding Flush of Long Lived Idle PTEs

time
t t t t
all cores
test and. perform full ’:est 'aA\nd.
clear A-bit TLB flush clear A-bit
PTE
=) not
cached
Set Clear
advance advance
clock pointer clock pointer

vmware M

TLB Version Tracking (1)

Address Space

version #

PTE SPTE
| A-bit version #
— [

clear

A-bit

vmware

5

version
CPU bitmap

full TLB flush
(CPU1)

1000 |4

clear bit

ad

TLB Version Tracking (2)

PTE SPTE
A-bit version #
0 5
vmware

Address Space

version #
‘ 6 \ full TLB flush
(CPU3)
version
CPU bitmap
1111 |<
reset

ad

TLB Version Tracking (3)

PTE SPTE Address Space
A-bit version # version #
0 5 7
. version
PTE unmap and flush: CPU bitmap
If PTE.A == 0 and 101 1
SPTE.ver + 1 < AS.ver

Then avoid TLB flush

vmware

Short Lived Private Mappings

read
mmap() access mumap()
1 1 1 time
— S
page-fault PTE cleared
= PTE set = TLB flush
usually same core

insert PTE to PTE.A==0? =mmp local
TLB with flush
PTE.A=0

vmware ‘ ‘

Evaluations

Prototype based on Linux 4.5

Baseline configured to avoid shootdown cost
Linux version that uses TLB flushes batching
Using efficient multicast IPI delivery

48-cores, 2-socket server

Our system denoted as ABIS:
Access-Based Invalidation System

vmware

Apache TLB Shootdowns
(Short-Lived Private Mappings)

120 T T T T T

vmware

) A it S

B QO o AL T T
O

-

&

) .
®)

=

@ B0 L
c

=

-8 40 L
o —+— baseline - send

e —%— ABIS - send

2 o0l /S o baseline - receive
o

O | [ARS TN 0000900000at 258 tataintor . 8o

~~~~~
- - owa . * o sowa V.4 ea 4
-=-v" > o S E By T ® o

-
‘-"-----‘--- -
~“’-- AAAAAAAAA

5 10 15 20 25 30 35 40
cores [#]

700

600

500

400

300

200

100

received shootdowns [thousands/sec]

p



Apache Performance

120 . . . . . . . 1.4
) 100 L 113
- it
5 so| o opF :
é ¢ Je 1 1.2 _g.
3 60 A R R ﬂlz_l 3
%)) ‘NEEE 'EEEEH .:‘m ?m-lq,'ﬁ‘ 11 %
*g}' a9, T — vt ﬁ .
B oo
8_ Bg [
D S . 1
- 20 et —+— baseline
b —»— ABIS
- @ - speedup

O I I I I I 09

5 10 15 20 25 30 35 40




PBZIP2 -

TLB shootdowns

(Long-Lived Idle Mappings)

35

30

25

20

15

10

sent shootdowns [thousands/sec]

vmware

—+— baseline - send
—— ABIS - send
- —— baseline - receive
—6— ABIS - receive

----.-.-d
-----

threads [#]

500

400

300

200

100

received shootdowns [thousands/sec]

p



PBZIP2 Performance

dnpoaads

1.14
1.12

baseline
ABIS
L

4
15 20 25 30 35 40 45
threads [#]

@
10

m
5

[Spuooas] awinunu

vmware



Microbenchmarks: VMScale

SUMOP]O0YS g1 pazifewsou

@ ©
~— o o

A

< !
o o o
I

1

bas-i-uoue
Jw-ouAsw
peal-deww
. JW-puel-M09
=
08
-ES Jw-bas-moo
=5
2@
— — o a1elbiw
G
©
o

o
awinunJ pazijewJou

vmware



Conclusions

Access-bit tracking can often prevent most TLB
shootdowns:

Long-lived idle PTEs
Short-lived private PTEs

Exploit memory coherency to check if TLB is cached

CPUs should allow more control over the TLB
Insertion of PTEs directly to the TLB

vmware .



