Secure and Efficient Application
Monitoring and Replication

Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu,
Per Larsen, Bjorn De Sutter, Michael Franz

_\s@‘? S \(\\_’\ ‘W /—\
=1 By VR

HRV . e YA

SR I I l l I l l u n a n UNNERS”EIT




AdObe PatCheS 1 O C”tlcal Zero-Day \{ulngrabilitv Bvpasses Apple's Security
Vulnerabilities in Flash Player, Featu ™" ces:
ShOCkwave Player’ and COI dFUSIOﬂ Updat Adobe flash update closes several critical holes

Posted on April 9th, 2013 by Derek Erwin ||

Update Flash now! Adobe releases patch,
Adobe Issues Emergency Updates .. s .
For Zero-Day Flaw in Flash Player fixing critical security holes

BY GRAHAM CLULEY POSTED 22 SEP 2015 - 09:24AM stems.
Memory corruption flaw is being exploited in the wild to distribute

ransomware samples like Locky and Cerber.

Critical Adobe Flash bug under active attack
currently has no patch

Exploit works against the most recent version; Adobe plans update later this week.

Firafay 4 hrawecar iindatea naterhac 29

(Another) Update To Adobe Flash Addresses
Latest 0-Day Vulnerability

April 15,2011
B By Charlie Osborne for Zero Day | March 10, 2016 -- 10:01 GMT (02:01 PST) | Topic: Security

by Dan Goodin - Jun 14, 2016 12:50pm PDT - I\

Adobe Releases Security Update
for 19 ‘Critical’ Vulnerabilities in
Adobe Fixes 18 Vulnerabilities in Flash Player Flash P|ayer

DAVID BISSON

By Eduard Kovacs on November 12, 2014 DEC 29 2015 LATEST SECURITY NEWS 5



Possible Solutions




Program




Memory Corruption Attacks

Program

0: void foo(){
®» 1: char buf[256];
» 2: gets(buf);
3:  printf(“%s”, buf);
4: }

0: int main(intargc, char** argv) {

1: foo();
2:  returnO; « N
3.}
— buf
-~ return
e J address

5



Program

Stack
Ox7f00beef

Ox7f00dead

Ox7ffffff

Program

Stack
Ox7f00beef

Ox7f00dead

Ox7Ffffffff




Multi

-Variant Execu

Program

Monitor

Kernel

tion Environments (MVEEs)

 Run multiple program variants in parallel

Variant system calls executed in lock-step

Suspend them at every system call

e Comparesystem call numbers/arguments

Master/Slave replication for 1/O



Performance Considerations

Programs can execute at native speed
(assumingyou have enough idle CPU
cores and memory bandwidth)

Program

BUT system call interceptionis SLOW!

Monitor

Kernel




Alternative Design

Efficient Monitoring:

* Load monitorinto variants’address spaces

Program

* Replicate results through a shared buffer
write

Monitor  Let masterrun ahead of slaves

BUT:

e Malicioussyscalls can circumvent monitor

v e Shared buffer data can be tampered with

Kernel



getpidé

Program

Program

In-Process

In-Process

Monitor

Monitor

open

Cross-Process Monitor

Syscall Broker Kernel

_ Split-Monitor Design:

Handle security-sensitive system calls in
Cross-Process Monitor (CP-MON)

Handle non-sensitive system calls in
In-Process Monitor (IP-MON)

Configurable relaxation policies

10



Relaxation Policies

e 3 different policies:
 Syscalls unconditionally handled by IP-MON (e.g. sys_getpid)

e Syscalls conditionally handled by IP-MON (e.g. sys_write for non-socket files)

 Syscalls probabilistically handled by IP-MON (not implemented)



Initializing the In-Process Monitor

Program

Program _ Registering IP-MON:

_ IP-MON e Callsys_prctlwith list of

non-security-sensitive system calls as
argument

* Thissys_prctlcall will ALWAYS be reported

prctl(PR_REGISTER_IPMON, to CP-MON
<list of system calls>)

e Ifthe call succeeds, all of the syscallsin the
list will be forwardedto IP-MON
from that pointonward

Syscall Broker Kernel

12



ReMon Components

getpidé

Program

_ IP-MON * Interceptsystem calls as they enter kernel

 Forwardthem to appropriate monitor
based on active relaxation policy

open * Authenticate system calls when resumed
' by monitor

Syscall Broker Kernel

13



ReMon Components

Program

Program m In-Process Monitor:

IP-MON

* Authorized to execute forwarded calls
w/o intervention by cross-process monitor

* Replicates system call results through
shared buffer

14



ReMon Components

Program

Program _ Cross-Process Monitor:

IP-MON e Standard ptrace-based monitor

e Completelyisolated from variants

Syscall Broker Kernel

15



In-Process Monitor Security

Program

Program _ No abuse of monitor privileges:

IP-MON

 Monitor cannot execute system calls that
did not pass through the broker first

* Broker generates authentication key
and loadsit into register when forwarding
call to monitor

 Key mustbe intact to finish execution
of forwarded call

16



In-Process Monitor Security

Program

Program _ No tampering with monitor data:

IP-MON  Locations of monitorand shared buffer are
only known to broker

e Pointersto monitorand buffer are never
visible in user space

17



In-Process Monitor Security

Program
Program _ Leak Prevention:

IP-MON » Sensitive values (e.g. pointers,
authorizationkey) only stored in registers
and never leaked or spilled

e Monitor has no indirect branches
=> control flow cannot be diverted
to malicious code

18



Performance

e Dual Intel Xeon E5-2660 — 20Mb Cache each
e 64Gb ECC DDR3 RAM
e Linux 3.13.11

* Server Benchmarks:

* Local loopback
e Gbit Link—2ms
* Gbit Link—5ms

2 variants of the protected program

e 4 worker threads for multi-threaded benchmark suites
(PARSEC/SPLASH-2x)



Performance

CP-MON only ReMon _____

SPEC CPU 2006 6.37% 3%
PARSEC 2.1 22% 11%
SPLASH-2x 29% 10%

Server Benchmarks up to 1249% <3.5%

20



Conclusions

* Existing Security-Oriented MVEEs:
e Secure but SLOW

* Existing Reliability-Oriented MVEEs:
e Fast but INSECURE

* ReMon:
e FAST and SECURE

https://github.com/stijn-volckaert/ReMon






