
1

Coherence Stalls or Latency Tolerance:

Informed CPU Scheduling for Socket

and Core Sharing

Sharanyan Srikanthan

Sandhya Dwarkadas

 Kai Shen

Department of Computer Science

University of Rochester

2

Performance Transparency Challenge:

Modern Multi-core Machines

Inter-processor interconnect

Socket 1

Memory
Controller

Shared Last Level Cache

Socket 2

 9 10

L1 Cache

L2
Cache

11 12

L1 Cache

L2
Cache

13 14

L1 Cache

L2
Cache

15 16

L1 Cache

L2
Cache ……..

Shared Last Level Cache

L1 Cache

L2
Cache

 3 4

L1 Cache

L2
Cache

 5 6

L1 Cache

L2
Cache

 7 8

L1 Cache

L2
Cache ……..

Memory
Controller

1 2

3

Performance Transparency Challenge:

Resource Sharing

Inter-processor interconnect

Socket 1

Memory
Controller

Shared Last Level Cache

Socket 2

 9 10

L1 Cache

L2
Cache

11 12

L1 Cache

L2
Cache

13 14

L1 Cache

L2
Cache

15 16

L1 Cache

L2
Cache ……..

Shared Last Level Cache

L1 Cache

L2
Cache

 3 4

L1 Cache

L2
Cache

 5 6

L1 Cache

L2
Cache

 7 8

L1 Cache

L2
Cache ……..

Memory
Controller

Problem: Simultaneous multi-threading

1 2

4

Performance Transparency Challenge:

Resource Sharing

Inter-processor interconnect

Socket 1

Memory
Controller

Shared Last Level Cache

Socket 2

 9 10

L1 Cache

L2
Cache

11 12

L1 Cache

L2
Cache

13 14

L1 Cache

L2
Cache

15 16

L1 Cache

L2
Cache ……..

Shared Last Level Cache

L1 Cache

L2
Cache

 3 4

L1 Cache

L2
Cache

 5 6

L1 Cache

L2
Cache

 7 8

L1 Cache

L2
Cache ……..

Memory
Controller

Problem: Intra-processor resource sharing

1 2

5

Performance Transparency Challenge:

Resource Sharing

Inter-processor interconnect

Socket 1

Memory
Controller

Shared Last Level Cache

Socket 2

 9 10

L1 Cache

L2
Cache

11 12

L1 Cache

L2
Cache

13 14

L1 Cache

L2
Cache

15 16

L1 Cache

L2
Cache ……..

Shared Last Level Cache

L1 Cache

L2
Cache

 3 4

L1 Cache

L2
Cache

 5 6

L1 Cache

L2
Cache

 7 8

L1 Cache

L2
Cache ……..

Memory
Controller

Problem: Inter-processor resource sharing

1 2

6

Performance Transparency Challenge:

Non-Uniform Access Latencies

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Inter-processor interconnect

Socket 1

220 Cycles

100 – 300 Cycles

Socket 2

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache ……..

40 Cycles

CPU

4 Cycles

10
Cycles

CPU

L1 Cache

65 – 75
Cycles

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache ……..

130 Cycles

Problem: Communication costs a function of thread/data placement

7

Impact of Thread Placement on Data

Sharing Costs

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Inter-processor interconnect

Socket 1

220 Cycles

100 – 300 Cycles

Socket 2

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache ……..

40 Cycles

CPU

4 Cycles

10
Cycles

CPU

L1 Cache

65 – 75
Cycles

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache ……..

130 Cycles

8

Impact of Thread Placement on Data

Sharing Costs

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Inter-processor interconnect

Socket 1

220 Cycles

100 – 300 Cycles

Socket 2

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache ……..

40 Cycles

CPU

4 Cycles

10
Cycles

CPU

L1 Cache

65 – 75
Cycles

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache ……..

130 Cycles

9

Impact of Thread Placement on Data

Sharing Costs

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Inter-processor interconnect

Socket 1

220 Cycles

100 – 300 Cycles

Socket 2

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache ……..

40 Cycles

CPU

4 Cycles

10
Cycles

CPU

L1 Cache

65 – 75
Cycles

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache ……..

130 Cycles

10

Sharing Aware Mapper (SAM)

• Srikanthan et al. [USENIX ATC 2015]

• Uses low overhead performance counters to

identify data sharing, resource demand

• Map processes to CPUs to minimize

– Communication cost due to data sharing

– Resource contention

– Memory access latency

11

Sharing Aware Mapper

(SAM-MPH)

• Remaining challenges:

– Understand impact of coherence: Execution stalls

or latency tolerance

– Analyze impact of hyper-threading

• Our approach:

– M: Metrics to identify and use latency tolerance for

data sharing cost to prioritization

– P: Phase detection adds hysteresis to recognize

and avoid reacting to transient phases

– H: Hyper-threading related cost/benefits

12

Importance of Task Placement

• Micro-benchmark forces data to move from one task to the

other, generating coherence activity

• Rate of coherence activity varied by varying ratio of private

to shared variable access

13

Prioritizing Applications –

Coherence Activity?

14

Metrics: SPC and IPC

• SPC – Stalls per inter-

socket coherence activity

• SPC helps identify latency

hiding capability of

application

• IPC – Instructions per

cycle

• IPC helps identify

computational contention

on processor core

15

Take Placement:

Importance of SPC
SPC > 550

16

Task Placement:

Importance of IPC

IPC > 0.9 IPC > 0.9

17

Prioritizing Applications:

High Coherence Activity

High Coherence

Activity

• SPC, Priority

• SPC ~

• SPC > 550

• Prioritize logical thread

co-location

• IPC > 0.9

• Avoid co-location on

hyper-threads even if it

results in distributing

across sockets

Stalls on cache accesses

Inter-socket coherence activity

18

Prioritizing Applications:

Moderate Coherence Activity
Moderate

Coherence

Activity

• IPC, Priority

• IPC > 0.9

• Avoid co-location on

hyper-threads even if it

results in distributing

across sockets

19

Prioritizing Applications:

Low Coherence Activity
Low

Coherence

Activity

• No preference to be

distributed across sockets

or consolidated within a

socket

• IPC > 0.9

• Avoid co-locating on

hyper-threads even if it

results in distributing

across sockets

20

Implementation Context

A B D C

Select which applications run

together (Linux Scheduler)

X ………

…..

Map threads to cores

(Tasks to be scheduled)

Implemented as a daemon running periodically

using CPU affinity masks to control placement

21

Monitoring Using Performance

Counters
• 5 metrics identified: 8 counter events need to be

monitored

– Inter-socket coherence activity

• Last level cache misses served by remote cache

– Intra-socket coherence activity

• Last private level cache misses – (sum of hits and misses

in LLC)

– Stalled cycles on coherence activity

– Local Memory Accesses

• Approximated by LLC misses

– Remote Memory Accesses

• 4 hardware programmable counters available: requires

multiplexing

22

Experimental Environment

• Fedora 19, Linux 3.14.8

• Dual socket machine – “IvyBridge” processor (40 logical
cores, 2.20 GHz)

• Quad socket machine – “Haswell” processor (80 logical
cores, 1.90 GHz)

• Benchmarks

– Microbenchmarks

– SPECCPU ’06 (CPU & Memory bound workloads)

– PARSEC 3.0 (Parallel workloads – light on data
sharing)

– Machine learning and data mining algorithms like:
ALS, Stochastic Gradient Descent, Single Value
Decomposition, etc

– Service Oriented – MongoDB

23

Standalone Applications

Improvement over

• Linux: Mean = 20%

• SAM: Mean = 6%

Baseline (Normalization factor): Best static mapping determined by exhaustive search

Dual Socket “IvyBridge”

24

Multiple Applications
Dual Socket “IvyBridge”

Improvement over

• Linux: Mean = 27% (Max: 43%)

• SAM: Mean = 9% (Max: 24%)

Improvement in fairness:

• Linux: Avg min speedup: 0.71, Avg max speedup: 0.84

• SAM: Avg min speedup: 0.86, Avg max speedup: 0.93

• SAM-MPH: Avg min speedup: 0.95, Avg max speedup: 1.0003

25

Standalone Applications
Quad Socket “Haswell”

Baseline (Normalization factor): Best static mapping determined by exhaustive search

Improvement over

• Linux: Mean = 45%

• SAM: Mean = 3%

26

Multiple Applications
Quad Socket “Haswell”

Improvement over

• Linux: Mean = 43% (Max: 61%)

• SAM: Mean = 21% (Max: 27%)

Improvement in fairness:

• Linux: Avg min speedup: 0.57, Avg max speedup: 0.79

• SAM: Avg min speedup: 0.73, Avg max speedup: 0.82

• SAM-MPH: Avg min speedup: 0.89, Avg max speedup: 0.99

27

Overheads and Scaling

• Overall overhead (40 cores)

– Performance counter reading
• Invoked every tick – 1msec – 8.9 µs per tick

• Constant time overhead

• Data consolidation and decision making is centralized

– Data consolidation
• Demon invoked every 100ms

• SAM-MPH: 230us (worst case), 14us (best case)

• SAM: 9.9us

– Decision making
• Invoked every 100ms – negligible time related to data

consolidation

• O(n2) complexity, time spent is within measurement error

28

Conclusions

• Information from performance counters is sufficient to

– Identify and prioritize latency intolerant applications

– Separate data sharing from resource contention

• Significant contributors to improving performance:

– Minimizing expensive communication due to data

sharing

– Identifying impact of data sharing on performance to

prioritize applications

– Identifying resource contention within the core,

outside of the core, and outside of the chip

29

Thank you

Questions?

Coherence Stalls or Latency Tolerance:

Informed CPU Scheduling for Socket and

Core Sharing

Sharanyan Srikanthan

Sandhya Dwarkadas

 Kai Shen

Department of Computer Science

University of Rochester

