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Performance Transparency Challenge: 

Modern Multi-core Machines  
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Performance Transparency Challenge: 

Resource Sharing  
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Performance Transparency Challenge: 

Resource Sharing  
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Performance Transparency Challenge: 

Resource Sharing  
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Performance Transparency Challenge:  

Non-Uniform Access Latencies 

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf  
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Problem: Communication costs a function of thread/data placement 
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Impact of Thread Placement on Data 

Sharing Costs 

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf  
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Impact of Thread Placement on Data 

Sharing Costs 

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf  
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Impact of Thread Placement on Data 

Sharing Costs 
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Sharing Aware Mapper (SAM) 

• Srikanthan et al. [USENIX ATC 2015] 

• Uses low overhead performance counters to 

identify data sharing, resource demand  

• Map processes to CPUs to minimize  

– Communication cost due to data sharing 

– Resource contention  

– Memory access latency 
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Sharing Aware Mapper  

(SAM-MPH) 

• Remaining challenges:  

– Understand impact of coherence: Execution stalls 

or latency tolerance 

– Analyze impact of hyper-threading  

• Our approach:  

– M: Metrics to identify and use latency tolerance for 

data sharing cost to prioritization 

– P: Phase detection adds hysteresis to recognize 

and avoid reacting to transient phases  

– H: Hyper-threading related cost/benefits 
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Importance of Task Placement 

• Micro-benchmark forces data to move from one task to the 

other, generating coherence activity 

• Rate of coherence activity varied by varying ratio of private 

to shared variable access 
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Prioritizing Applications – 

Coherence Activity? 
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Metrics: SPC and IPC 

• SPC – Stalls per inter-

socket coherence activity 

• SPC helps identify latency 

hiding capability of 

application 

• IPC – Instructions per 

cycle 

• IPC helps identify 

computational contention 

on processor core 
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Take Placement: 

Importance of SPC 
SPC > 550 
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Task Placement: 

Importance of IPC 

IPC > 0.9 IPC > 0.9 
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Prioritizing Applications: 

High Coherence Activity 

High Coherence 

Activity 

•     SPC,    Priority 

 

• SPC ~ 

 

• SPC > 550  

• Prioritize logical thread 

co-location  

• IPC > 0.9 

• Avoid co-location on 

hyper-threads even if it 

results in distributing 

across sockets 

Stalls on cache accesses 

Inter-socket coherence activity 
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Prioritizing Applications: 

Moderate Coherence Activity 
Moderate 

Coherence 

Activity 

•     IPC,     Priority 

 

• IPC > 0.9 

• Avoid co-location on 

hyper-threads even if it 

results in distributing 

across sockets 
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Prioritizing Applications: 

Low Coherence Activity 
Low 

Coherence 

Activity 

• No preference to be 

distributed across sockets 

or consolidated within a 

socket 

• IPC > 0.9 

• Avoid co-locating on 

hyper-threads even if it 

results in distributing 

across sockets 
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Implementation Context 

A B D C 

Select which applications run 

together (Linux Scheduler) 

X ………

….. 

Map threads to cores  

(Tasks to be scheduled) 

Implemented as a daemon running periodically 

using CPU affinity masks to control placement 
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Monitoring Using Performance 

Counters 
• 5 metrics identified: 8 counter events need to be 

monitored 

– Inter-socket coherence activity 

• Last level cache misses served by remote cache 

– Intra-socket coherence activity 

• Last private level cache misses – (sum of hits and misses 

in LLC) 

– Stalled cycles on coherence activity 

– Local Memory Accesses 

• Approximated by LLC misses 

– Remote Memory Accesses 

• 4 hardware programmable counters available: requires 

multiplexing 
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Experimental Environment 

• Fedora 19, Linux 3.14.8 

• Dual socket machine – “IvyBridge” processor (40 logical 
cores, 2.20 GHz) 

• Quad socket machine – “Haswell” processor (80 logical 
cores, 1.90 GHz) 

• Benchmarks 

– Microbenchmarks 

– SPECCPU ’06 (CPU & Memory bound workloads) 

– PARSEC 3.0 (Parallel workloads – light on data 
sharing) 

– Machine learning and data mining algorithms like: 
ALS, Stochastic Gradient Descent, Single Value 
Decomposition, etc 

– Service Oriented – MongoDB  
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Standalone Applications 

Improvement over 

•   Linux: Mean = 20% 

•   SAM:  Mean = 6% 

Baseline (Normalization factor): Best static mapping determined by exhaustive search 

Dual Socket “IvyBridge” 
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Multiple Applications 
Dual Socket “IvyBridge” 

Improvement over 

•   Linux: Mean = 27% (Max: 43%) 

•   SAM:  Mean = 9%   (Max: 24%) 

Improvement in fairness:  

•   Linux:      Avg min speedup: 0.71, Avg max speedup: 0.84 

•   SAM:       Avg min speedup: 0.86, Avg max speedup: 0.93 

•   SAM-MPH:  Avg min speedup: 0.95, Avg max speedup: 1.0003 
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Standalone Applications 
Quad Socket “Haswell” 

Baseline (Normalization factor): Best static mapping determined by exhaustive search 

Improvement over 

•   Linux: Mean = 45% 

•   SAM:  Mean = 3% 
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Multiple Applications 
Quad Socket “Haswell” 

Improvement over 

•   Linux: Mean = 43%   (Max: 61%) 

•   SAM:  Mean = 21%   (Max: 27%) 

Improvement in fairness:  

•   Linux:      Avg min speedup: 0.57, Avg max speedup: 0.79 

•   SAM:       Avg min speedup: 0.73, Avg max speedup: 0.82 

•   SAM-MPH:  Avg min speedup: 0.89, Avg max speedup: 0.99 
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Overheads and Scaling 

• Overall overhead (40 cores) 

– Performance counter reading  
• Invoked every tick – 1msec – 8.9 µs per tick 

• Constant time overhead 

• Data consolidation and decision making is centralized 

– Data consolidation  
• Demon invoked every 100ms  

• SAM-MPH: 230us (worst case), 14us (best case) 

• SAM: 9.9us 

– Decision making 
• Invoked every 100ms – negligible time related to data 

consolidation 

• O(n2) complexity, time spent is within measurement error 
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Conclusions 

• Information from performance counters is sufficient to  

– Identify and prioritize latency intolerant applications 

– Separate data sharing from resource contention 

• Significant contributors to improving performance: 

– Minimizing expensive communication due to data 

sharing 

– Identifying impact of data sharing on performance to 

prioritize applications 

– Identifying resource contention within the core, 

outside of the core, and outside of the chip 
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Thank you 

Questions? 
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