Beam: Ending Monolithic Applications for Connected Devices

Chenguang Shen (UCLA)

Rayman Preet Singh (Univ. of Waterloo/Samsung Research)

Amar Phanishayee, Aman Kansal, Ratul Mahajan (Microsoft Research)

h) search)

Microsoft

Growth in Connected Devices

Internet of Things (IoT)

of sensing devices > # of people since 2008

50 billion *connected sensing devices* by 2020

http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

Growth in Connected Devices

Smart Home Devices

Sensors in Commercial Spaces

Automobile Sensors

Personal Devices

mHealth Devices 3

Sample App: Quantified Self

Quantified Self App

Challenge 1: development effort

- Device driver
- Inference logic
- User interface
- Cloud service

Quantified Self App

Heterogeneous Hardware Devices

Camera

• Fitness Activity

- Challenge 2: device selection
 - Discover devices in a deployment
 - Select appropriate devices from deployment
 - Support settings with user mobility where available devices might change

Quantified Self App

• Challenge 3: disconnection tolerance

Mobile and **Geo-distributed** Devices

• App should work even with network disconnections

Quantified Self App (e.g., Fitness Activity Tracking)

• Challenge 4: efficient resource usage

Battery-powered Mobile Devices

• Efficiently partition computation across available devices

Quantified Self App

Recap of Key Challenges

- Development effort
- Device discovery and selection
- Disconnection tolerance
- Efficient resource usage

Beam Overview

Subscribe(FitnessActivity, params)

Beam: programming abstraction + associated runtime

- Insight: decouple *what is sensed and inferred* from *how it is sensed and inferred*
 - Raise the abstraction from data to **inferences**
- Key abstraction: *inference graph*
 - Simplifies development, enables device selection, support device disconnections •

Outline

- Motivation and Beam overview
- Inference graph overview
- Key challenges addressed by the inference graph

• Evaluation of development effort

Quantified Self – Inference Graph

- Adapters device driver (leaf node)
- Inference modules (node)
 - Top level node apps

Inference Modules

Adapters

- Adapters device driver (leaf node)
- Inference modules (node)
 - Top level node apps
- Channels (edge)

Inference Modules

Adapters

- Adapters device driver (leaf node)
- Inference modules (node)
 - Top level node apps
- Channels (edge)
- Coverage tags
 - Manage sensor coverage

Inference Modules

Inference Graph Runs Across Multiple Devices

Outline

- Motivation and Beam overview
- Inference graph overview
- Key challenges addressed by the inference graph
 - Device selection
 - Efficient resource usage
 - Disconnection tolerance (in our paper)
 - Micro-benchmark results
- Evaluation of development effort

Key Challenges Solved by the Inference Graph

Device Selection

- Select appropriate devices in a *heterogeneous deployment* that can satisfy an app's inference request
- Support settings with *user mobility*

Efficient resource usage

- *Efficiently partition* computation across devices
- Optimize resource usage

Disconnection tolerance

• Handle dynamics caused by network *disconnection* and user mobility

What Devices Should We Use?

Beam recursively resolves each module's input dependency.

What Devices Should We Use?

What Devices Should We Use?

PC Activity Inference

5: Facebook

Inference Accuracy

29.68%

4: Email

5: Facebook

Inference Accuracy

Inference Accuracy

Key Challenges Solved by the Inference Graph

Device Selection

- Select appropriate devices in a *heterogeneous deployment* that can satisfy an app's inference request
- Support settings with *user mobility*

Efficient resource usage

- *Efficiently partition* computation across devices
- Optimize resource usage

Disconnection tolerance

• Handle dynamics caused by network *disconnection* and user mobility

Beam Optimization - Reactive

Remote IDU transfer (Bytes / 4 sec)

Cloud

Reactive: Minimize # of remote channels Wide-area data transfer, 100 second

Beam's *reactive optimization* minimizes # of remote channels, but results in high remote data transfer rate

Beam Optimization - Proactive

Remote IDU transfer (Bytes / 4 sec)

Wide-area data transfer, 100 second

Beam's *proactive optimization* identifies high remote data transfer rate and re-evaluate graph

Proactive: Active profiling, minimize remote data rate

Scatter node optimization

Beam Implementation

- C# cross-platform portable service
 - Supports .NET v4.5, Windows Store 8.1, and Windows Phone 8.1 apps
- Sample implementation of 8 inference modules and 9 adapters
 - Including a HomeOS adapter for more device abstractions
- 9609 total source lines of code
- APIs for both app developers and inference developers

Outline

- Motivation and Beam overview
- Inference graph overview
- Key challenges addressed by the inference graph
- Evaluation of development effort

Sample Apps: Quantified Self and IFTTT Rules

Receive an emergency call if smoke is detected

by **nest**

Quantified Self App

å 3.2k ♥ 167

Evaluation of Development Effort

Monolithic-All Cloud (M-AC)

Monolithic-Cloud and Device (M-CD)

Monolithic-Inference Library (M-Lib)

Monolithic-Sensor Hub (M-Hub)

Beam

Evaluation of Development Effort

Number of *development tasks*

20 20 Development Task Count 15 15 10 10 0 0 0 0 M-AC M-Lib M-Hub Beam and M-CD Sensor driver User interface Inference logic Cloud service

Rules App

Up to 4.5x lower number of dev tasks, and up to 12x lower source lines of code

Monolithic-All Cloud (M-AC)

Monolithic-Cloud and Device (M-CD)

Monolithic-Inference Library (M-Lib)

Monolithic-Sensor Hub (M-Hub)

Beam

Conclusion

Decouple "what is sensed and inferred" from "how it is sensed and inferred"

- Up to 3x higher inference accuracy from dynamic device selection
- Beam's dynamic optimizations match hand-optimized apps

Handling disconnections