
Opportunities	&	Challenges	in	Adopting	Microservice	
Architecture	for	Enterprise	Workloads

Shriram	Rajagopalan,	
Priya	Nagpurkar,	Tamar	Eilam,	

and	Hani	Jamjoom
Etai	Lev-Ran,	and	
Vita	Bortnikov

IBM	Watson	 Research IBM	Research,	Haifa

Frank	Budinsky

IBM

Contact:	shriram@us.ibm.com



• Emergence	of	microservices	&	DevOps

• Challenges	&	Opportunities

• Adopting	a	SDN	perspective	of	microservices

• Version/Content-aware	routing

• Systematic	resilience	testing

2



• Emergence	of	microservices	&	DevOps

• Challenges	&	Opportunities

• Adopting	a	SDN	perspective	of	microservices

• Version/Content-aware	routing

• Systematic	resilience	testing

3



From	Monoliths	to	Microservices

Monolithic	Service	
instances

Microservice	
instances

• Each	service	serves	a	single	
purpose	 (functionality)

• Many	loosely-coupled
microservices	communicate	
over	the	network

Well-defined	API

4

• A	single	service	serves	multiple	
purposes

• Tight-coupling across	services



From	Waterfall	to	DevOps

5

Plan Develop Test Deploy

months	to	years

Features,	performance	 improvements,	
bug	fixes,	etc.,	are	periodically delivered	
as	one	big	update

hours
to	days

Continuous	delivery	of	incremental	updates

P T DD P T DD P T DD P T DD P T DD

Plan Develop Test Deploy

Culture	+	Automation	 +	Instrumentation

Emphasizes	constant	experimentation	&	
feedback-driven	development



Microservices	+	DevOps

• Polyglot	applications	with	
loosely-coupled	microservices

• Small	“two	pizza”	teams	per	
microservice
– Autonomy	&	accountability
– Own	the	roadmap	for	the	

feature/service
– Independent	 launch	schedules

• Develop,	deploy,	 scale
– “You	build	it,	you	run	it”

• 10s	to	100s	of	deployments	a	
day	across	the	application
– E.g.,	Orbitz,	GrubHub,	HubSpot

• Multiple	versions	co-exist	
simultaneously

6

Users

MicroserviceA

B

C

D D’

Application

F

⋮

RDBMS

Message	
Bus

NoSQL

Cloud	Platform	Services

…

3rdparty	
Internet Services

Social	Media

Mobile	Push	
Notification

Ruby

Node.js

Go Java



“Traditional”	Enterprises	are	moving	or	have	moved	
to	Microservices	+	DevOps

7



• Emergence	of	microservices	&	DevOps

• Challenges	&	Opportunities

• Adopting	a	SDN	perspective	of	microservices

• Version/Content-aware	routing

• Systematic	resilience	testing

8



Opportunities

• Enterprises	are
– Re-architecting legacy	applications	to	microservice	architecture
– Developing	in-house	platforms to	host	sensitive	apps	on	premise

• E.g.	Fidelity’s	Mako

– Still	experimenting	with	different	design	alternatives
– Heavily	leveraging	open-source	technologies

• Opportunity	for	the	research	community	to	engage
– Influence	infrastructure	&	application	design
– Integrate	ideas	into	open-source	platforms	and	solutions

9



Challenges

• 10s	to	100s	of	deployments	a	day	
across	the	application

• Multiple	versions	co-exist	
simultaneously

• Complexity	shifted	to	the	network	
and	orchestration	across	services

• Cascading	 failures	despite	the	
microservices	being	designed	for	
failure

10

Users

MicroserviceA

B

C

D D’

Application

F

⋮

RDBMS

Message	
Bus

NoSQL

Cloud	Platform	Services

…

3rdparty	
Internet Services

Facebook

Mobile	Push	
Notification

Ruby

Node.js

Go



Ad-hoc	Designs	&	Implementations

11

• Two	Options:

• Adopt	open-source	frameworks	from	large	scale	internet	
applications	(e.g.,	Netflix	OSS)
• These	frameworks	are	point	solutions	 that	fit	the	needs	&	environment	 of	

the	companies	that	operate	these	applications	(e.g.,	Java	only	support)

• Shoehorn	the	service-oriented	web	application	into	clustering	
frameworks	like	Kubernetes,	Marathon,	etc.,	and	write	ad-hoc	tools	
on	top	to	control	the	microservices



• Emergence	of	microservices	&	DevOps

• Challenges	&	Opportunities

• Adopting	a	SDN	perspective	of	microservices

• Version/Content-aware	routing

• Systematic	resilience	testing

12



Microservice	Application	Requirements

• Integration
– Service	registration	&	discovery
– Load	balancing	of	requests	across	microservice	 instances

• Version	&	content-aware	routing
– Hypothesis	driven-development	 (i.e.	A/B	testing)
– Canary	deployments	 (feature	release	to	%	of	users)
– Red/Black	deployments	 (gradual	 rollout	 to	all	users)
– Etc.

• Operational	testing	in	production
– E.g.,	does	failure	recovery	work	as	expected?

13



Introducing	Amalgam8

• Observation:
– Microservices	 interact	only	over	the	network predominantly	 using	HTTP(s)
– Existing	solutions	 lack	the	ability	to	dynamically	control	the	routing	of	

requests	between	two	microservices

• Insight:
– Think	of	requests	as	packets	and	microservices	as	switches
– A	Layer-7	SDN	will	simplify	 integration	and	routing

• Design:
– Sidecar:	A	programmable	 layer-7	proxy	process attached	to	each	microservice
– Controller:	The	equivalent	of	an	SDN	controller,	except	at	Layer-7

14



Requests
A'

B

B’
Data	Plane	w/	
Tenant	Apps

Controller,	Service	Registry

API

Multi-tenant	
Control	Plane

C

Simplifying	Integration

15
Kubernetes,	Marathon,	Swarm,	VMs,	Bare	Metal

A

Sidecar

Tenant	1

Tenant	2

Tenant	3

…



• Emergence	of	microservices	&	DevOps

• Challenges	&	Opportunities

• Adopting	a	SDN	perspective	of	microservices

• Version/Content-aware	routing

• Systematic	resilience	testing

16



Requests
A'

B

B’
Data	Plane	w/	
Tenant	Apps

Controller,	Registry

API

upgrade	from	B	to	B’

Multi-tenant	
Control	Plane

Version	
Routing

C

Send	35%	of	iphone
traffic	to	A’	and	65%	to	A

17
Kubernetes,	Marathon,	Swarm,	VMs,	Bare	Metal

A

Sidecar

Analytics

Canary	
deployments

Red/Black	
deploy…

Active	Deploy

Tenant	1

Tenant	2

Tenant	3

…

Auto-rollback	if	B’	fares	poorly	compared	
to	B,	with	a	given	confidence	measure
Ref.	to	Canary	Advisor,	ISSTA	2015



• Emergence	of	microservices	&	DevOps

• Challenges	&	Opportunities

• Adopting	a	SDN	perspective	of	microservices

• Version/Content-aware	routing

• Systematic	resilience	testing

18



Resilience	Testing

• Microservices	designed	but	“seldom”	tested	for	failures

• Randomized	fault	injection	(e.g.,	Netflix	Chaos	Monkey)	is	insufficient
– Manual	effort	to	validate	whether	application	recovered	properly	or	not

• Gremlin	– systematic	resilience	testing
– Script	failure	scenarios	and	expectations
– Faults	injected	 from	the	network
– Run	assertions	on	 the	logs	to	validate	expectations
– Exposes	faulty	recovery	behavior,	 conflicting	 failure	handling	policies	across	

services,	etc.	

19



Requests
A'

B

B’
Data	Plane	w/	
Tenant	Apps

Controller,	Registry

API

Multi-tenant	
Control	Plane

Version	
Routing

C

Overload(C)
Assert (A’	responds	in	10ms)

20

Fault	
Injection

Kubernetes,	Marathon,	Swarm,	VMs,	Bare	Metal

A

Sidecar

Gremlin
Resilience	Testing

Tenant	1

Tenant	2

Tenant	3

…

Ref.	to	Gremlin,	ICDCS	2016

Failures	are	emulated	by	manipulating	
network	interactions	between	services	

(e.g.,	delays,	HTTP	500s,	etc.)

Assertions	are	validated	against	request	logs	
to	identify	faulty	recovery	behavior



Thank	You

• https://amalgam8.io

• https://github.com/amalgam8/examples

21



Backup

22



Research	Challenges	in	the	Face	of	Continuous	
Change

• Managing	stateful	services	and	data	stores

• Problem	determination	gains	many	dimensions
– The	problem	may	not	just	be	in	your	code
– Many	dimensions	 change	simultaneously	 such	as	infrastructure,	 runtime,	 etc.
– Can	we	pinpoint	 the	issue	down	to	the	Git commit	by	correlating	runtime	 logs	

and	development	history?

• Too	much	data,	too	little	insights
– Logs	emitted	by	all	layers	of	the	software	stack,	by	automated	build	 tools,	etc.
– Yet,	we	are	no	where	close	to	pinpointing	 the	problem	and	fixing	it	when	

things	go	wrong!

23



Opportunities	to	Fix	Issues	Before	They	Occur

• Software	build,	test	and	deployment	phases	are	completely	
automated

• Provides	a	unique	opportunity	to	catch	security	vulnerabilities,	
buggy	implementations,	etc.,	even	before	software	is	deployed

• However,	existing	tools	and	techniques	do	not	scale	to	the	extreme	
code	churn	(100s	of	deployments)

24


