Opportunities & Challenges in Adopting Microservice
Architecture for Enterprise Workloads

Shriram Rajagopalan,
Priya Nagpurkar, Tamar Eilam, Etai Lev-Ran, and
and Hani Jamjoom Vita Bortnikov Frank Budinsky

IBM Watson Research IBM Research, Haifa [IBM

Contact: shriram@us.ibm.com

Emergence of microservices & DevOps

Challenges & Opportunities

Adoptinga SDN perspective of microservices

Version/Content-aware routing

Systematicresilience testing

Emergence of microservices & DevOps

Challenges & Opportunities

Adoptinga SDN perspectiveof microservices

Version/Content-aware routing

Systematicresilience testing

From Monoliths to Microservices

Monolithic Service Microservice Well-defined API

Instances instances

OO
@ @

e Asingle service serves multiple e Each service serves a single
purposes purpose (functionality)
* Tight-coupling across services * Many loosely-coupled

microservices communicate
over the network

From Waterfall to DevOps

months to years ‘

h___ 1 - Plan Develop Test Deploy

Features, performance improvements,

bug fixes, etc., are periodically delivered
as one big update

hours
to days

Culture + Automation + Instrumentation

Continuous delivery of incremental updates

Emphasizes constant experimentation &
feedback-driven development

Microservices + DevOps

Users

Application

—— - - -

/\/Microservice
Node.js

3 party
Internet Services

/[Social Media
Mobile Push \
Notification)

[

- —— [—— - = - -

m——— e e =

NoSQL RDBMS

Cloud Platform Services

Polyglot applications with
loosely-coupled microservices

III

Small “two pizza” teams per
microservice
— Autonomy & accountability

— Own the roadmap for the
feature/service

— Independent launch schedules
* Develop, deploy, scale
— “You build it, you run it”

10s to 100s of deployments a
day across the application

— E.g., Orbitz, GrubHub, HubSpot

Multiple versions co-exist
simultaneously

I”

Enterprises are moving or have moved
to Microservices + DevOps

[BD

“Traditiona

CHASE ©
% oldman -
achs =' AMaDEUS

E Ameritrade TRAVEL AGENCY

(o Lufthansa
*MOCYS Sy,
Walmart >'2 & G

9 Expedia

7

Emergence of microservices & DevOps

Challenges & Opportunities

Adoptinga SDN perspective of microservices

Version/Content-aware routing

Systematicresilience testing

Opportunities

Enterprisesare
— Re-architecting legacy applicationsto microservice architecture
— Developingin-house platforms to host sensitive apps on premise
* E.g. Fidelity’s Mako
— Still experimenting with differentdesign alternatives
— Heavilyleveraging open-source technologies

Opportunity for the research community to engage
— Influence infrastructure & application design
— Integrate ideas into open-source platforms and solutions

Challenges

Application 10s to 100s of deployments a day
/EEY\ """" """ o (T S party across the application

Internet Services

/[Facebook | Multiple versions co-exist

MobilePush) simultaneously
Notification |

Es:] : ‘ Complexity shifted to the network
.= b [) and orchestration across services

- —— [—— - = - -

Cascading failures despite the
microservices being designed for
Cloud Platform Services failure

=
(@)
o |
2i(]
=
-
X |
=
o
Z I
2|
=
(oo
c A
" Q
oQ
(0]
[]
[)

Ad-hoc Designs & Implementations

* Two Options:

 Adoptopen-source frameworksfrom large scaleinternet
applications (e.g., Netflix OSS)

* These frameworks are point solutions that fit the needs & environment of
the companies that operate these applications (e.g., Java only support)

 Shoehorntheservice-oriented web application into clustering
frameworkslike Kubernetes, Marathon, etc.,and write ad-hoctools
on top to controlthe microservices

Emergence of microservices & DevOps

Challenges & Opportunities

Adopting a SDN perspective of microservices

Version/Content-aware routing

Systematicresilience testing

12

Microservice Application Requirements

* Integration
— Service registration & discovery
— Load balancing of requests across microservice instances

* \ersion & content-aware routing
— Hypothesis driven-development (i.e. A/B testing)
— Canary deployments (feature release to % of users)
— Red/Black deployments (gradual rollout to all users)
— Etc.

 OQOperationaltestingin production

— E.g., does failure recovery work as expected?

Introducing Amalgam8

e QObservation:

— Microservices interact only over the network predominantly using HTTP(s)

— Existing solutions lack the ability to dynamically control the routing of
requests between two microservices

* Insight:
— Think of requests as packets and microservices as switches
— A Layer-7 SDN will simplify integration and routing

* Design:
— Sidecar: A programmable layer-7 proxy process attached to each microservice
— Controller: The equivalent of an SDN controller, except at Layer-7

Simplifying Integration

API

Multi-tenant
Control Plane

Controller, Service Registry

Requests —>»| —>
— Tenant 3

Data Plane w/ / \) \ \l \Vv \ Tenant 2
Tenant Apps % Zﬂ\
—_> |:|<

Tenant 1

_ -

[Kubernetes, Marathon, Swarm, VMs, Bare Metal

Emergence of microservices & DevOps

Challenges & Opportunities

Adoptinga SDN perspective of microservices

Version/Content-aware routing

Systematicresilience testing

16

Analytics

4
/
/

) /// Auto-rollback if B’ fares poorly compared
Active Deploy / toB, witha given confidence measure

Canary Red/Black L}’ Ref. to Canary Advisor, ISSTA 2015
**| deployments deploy

Send 35%of iphone
trafficto A’and 65%to A

upgrade fromBto B’

Version AP|

Routing

Multi-tenant
Control Plane

Controller, Registry

Data Plane w/

/ \ l X \ Tenant 2
Tenant Apps |:|\)
—>
Requests —>| —>|:|<

— , a Tenant 3
(_) Tenant 1

K Sidecar / oee

[Kubernetes, Marathon, Swarm, VMs, Bare Metal

Emergence of microservices & DevOps

Challenges & Opportunities

Adoptinga SDN perspective of microservices

Version/Content-aware routing

Systematicresilience testing

18

Resilience Testing

 Microservices designed but “seldom” tested for failures

 Randomized faultinjection (e.g., Netflix Chaos Monkey) isinsufficient

— Manual effort to validate whether application recovered properly or not

* Gremlin—systematicresilience testing
— Script failure scenarios and expectations
— Faults injected from the network
— Run assertions on the logs to validate expectations

— Exposes faulty recovery behavior, conflicting failure handling policies across
services, etc.

Ref. to Gremlin, ICDCS 2016

Failures areemulated by manipulating

network interactions between services
(e.g., delays, HTTP 500s, etc.) Gremlin

Resilience Testing

Assertions arevalidated againstrequestlogs | feeeeeeeeeeeeeeeeeee

to identify faulty recovery behavior Overload(C)
Assert (A’ respondsin 10ms)

Version API Fault
Routing Injection

Multi-tenant
Control Plane

Controller, Registry

Data Plane w/ / \l \Vv \ Tenant 2
Tenant Apps |:|\>

.
Requests —>»| —>
— , a Tenant 3
(_) Tenant 1

K Sidecar / ooe

[Kubernetes, Marathon, Swarm, VMs, Bare Metal]

Thank You

https://amalgam8.io

https://github.com/amalgam8/examples

21

Backup

Research Challenges in the Face of Continuous
Change

* Managingstateful services and data stores

* Problem determinationgains many dimensions
— The problem may not just be in your code
— Many dimensions change simultaneously such as infrastructure, runtime, etc.

— Can we pinpoint the issue down to the Git commit by correlating runtime logs
and development history?

« Toomuchdata, too little insights

— Logs emitted by all layers of the software stack, by automated build tools, etc.

— Yet, we are no where close to pinpointing the problem and fixing it when
things go wrong!

Opportunities to Fix Issues Before They Occur

Software build, testand deployment phasesare completely
automated

Provides a unique opportunity to catch security vulnerabilities,
buggy implementations, etc., even before software is deployed

However, existingtools and techniquesdo notscale to the extreme
code churn (100s of deployments)

