Tucana: Design and Implementation of a
Fast and Efficient Scale-up Key-value store

Anastasios Papagiannis, Giorgos Saloustros,
Pilar Gonzalez-Férez, and Angelos Bilas

.:,Amolcmsd.m

Institute of Computer Science (ICS)

r:,FORTH— lCS Foundation for Research and Technology — Hellas (FORTH)

Greece

Key-value Stores — Important Building Block

» Key-value store: A dictionary for arbitrary key-value pairs
Used extensively: web indexing, social networks, data analytics
Supports inserts, deletes, point (lookup) and range queries (scan)

» Today, key-value stores inefficient
Consume a lot of CPU cycles
Mostly optimized for HDDs — right decision until today

2 FORTHLICS

Challenges

» Overhead is related to several aspects of key-value stores

Indexing data structure
DRAM caching and |/O to devices
Persistence and failure atomicity

» Our goal: improve CPU efficiency of key-value stores
Design for fast storage devices (SSDs)
Bottleneck shifts from device performance to CPU overhead

3 FORTHLICS

Outline of this talk

» Discuss our design and motivate decisions
Indexing data structure
DRAM caching and |/O to devices
Persistence and failure atomicity
H-Tucana: An HBase Integration

» Evaluation
» Conclusions

4 | EORTHICS

Write Optimized Data Structures (WODS)

» Inserts are important for key-value stores
» Need to avoid a single |/O per insert
» Main approach: Buffer writes in some manner

... and use single I/0 to the device for multiple inserts
Examples: LSM-Trees, B&-Trees, Fractal Trees
» Most popular: LSM-Trees

Used by most key-value stores today
Great for HDDs - always perform large sequential I/Os

5 FORTHLICS

LSM-Trees

» Data in large containers - leads to large/sequential |/O
» Great for HDDs! However, they require compactions
E Le"_e'o » Sorting containers to reduce index size and fit in memory
= mmm » High overhead: CPU processing and I/0 amplification
|
A Compaction - Compaction _
dEmT maE

Level 1 Level 2 Level 3

D 6 ‘ FORTH.ICS

SSDs vs. HDDs

700 Writes Reads
SSD(2010)-iodepth 1 —¢

@ 600 |SSD(2010)-iodepth32 -+ | L
) SSD(2015)-iodepth 1 o N
= 500 [SSD(2015)-iodepth 32 -4 e T
— HDD(2009)-iodepth 1 --%-- o
5 400 HDD(009yiodepth32 -0~ 4w [AT |
: L »
S 300
o 200
<
= 100}

0

Request size (kB) Request size (kB)

7 FORTH-ICS

Bé-Trees

» B-Tree variant that uses buffering to improve inserts
» Similar complexity as B-Tree for point, range queries
» No compactions —unsorted buffers, full index

» Better CPU overhead and I/O amplification

» Worse I/O randomness and size

8 FOF!IH— IQS

Bé-Trees

» Each internal node has a persistent buffer
» Buffers “log” multiple inserts and use one I/O to device

<€

Insert

* FORTH-ICS

Bé-Trees

» Each internal node has a persistent buffer
» Buffers “log” multiple inserts and use one I/O to device

<€

Insert

* FORTH-ICS

Bé-Trees

» Each internal node has a persistent buffer
» Buffers “log” multiple inserts and use one I/O to device

<€

Insert

* FORTH-ICS

Tucana B&-Tree

~ 12

|

In-Memory

Device

Un-Buffered Nodes

Buffered Nodes

Write Buffer

/ FORTH-ICS

Tucana B&-Tree

~ 13

|

Un-Buffered Nodes

-
o
£
Q
: N
<
Buffered Nodes
o Write Buffer
S
Q
a

/ FORTH-ICS

Buffered Node Organization

» Searching buffered nodes requires accessing keys on device
» Tucana uses two optimizations for buffered nodes

» 1) Include key prefixes (fixed size)
Eliminates 65%-75% of 1/Os for keys in all queries

» 2) Include hashes for full keys (fixed size)
Eliminates 98% of 1/Os for keys in point queries

FOF%IH— IQS

14

DRAM Caching — Device I/O

» Key-value stores use a user-space DRAM cache
Avoids system calls for hits - Explicit kernel I/O for misses

» However, hits incur overhead in user-space
Both index+data in every traversal — Not important for HDDs

15 FORTHLICS

Alternative: DRAM caching via mmap

» Use multiple regions/containers per device
» Each region contains allocator + multiple indexes

» mmap each region directly to memory
Same layout of metadata + data on device and in memory

» Hits via mapped virtual addresses do not incur overhead
» Misses do not require serialize/deserialize of index
» mmap introduces new challenges

1 6 FOF{IH- IQS

mmap: Misses Cause Page Faults, Fetches, Evictions

» (1) We can improve inserts
» Inserts require a read-before-write I/0O
» We insert only on newly allocated pages

» We detect and eliminate fetches to newly allocated pages
Requires a kernel module with access to allocator metadata

» (2) Still, no control over size, timing of 1/Os + evictions
We use mmap hints to disable prefetching
Should examine these in detail in future work

17 FOF!IH— IQS

Persistence And Recovery

» Typical for HDDs: Write-Ahead-Logging (WAL)
Sequential I/0 and ability to batch I/Os — both good
However, double writes — first to log, then in-place
Incurs overhead for log management during recovery

» Alternative: Copy-On-Write (CoW)
Instantaneous recovery and amenable to versioning
Write-anywhere approach and modify pointers atomically
Single write, however, more random I/O

18 FORTHLICS

H-Tucana: An Hbase Integration

» Use Tucana to replace HBase’s LSM-based storage engine

» We keep HBase for
Metadata architecture
Fault tolerance
Data distribution
Load balancing

19 FORTHLICS

Outline of this talk

» Discuss our design and motivate decisions
» Evaluation
» Conclusions

20 FORTHLICS

Experimental Setup

» Compare Tucana with RocksDB
H-Tucana with HBase and Cassandra
» Platform
2 * Intel Xeon E5520 with 48GB DRAM in total
4 * Intel X25-E SSDs (32GB) in RAIDO
» YCSB — synthetic workloads
Insert only, read only, and various mixes

» Two datasets
Small dataset fits in memory
Large dataset is twice the size of memory

» We examine
Efficiency - cycles/op
Throughput - ops/s
I/O amplification

FORTHLICS

21

Efficiency

» Improvement over RocksDB in terms of cycles/op
212

o Small Dataset = » Small Dataset
<10 Large Dataset &1 |

o 5.2x up to 9.2x
2 8

2 ¢ » Large Dataset
@

24 2.6x up to 7x
3 ol

5

20

5

oc

22 FORTHLICS

Throughput

4

Comparison with RocksDB in terms of ops/sec

23

RocksDB mm

Tucana X3 1

» Small dataset
2X up to 7x
4.5x on average

FOF%IH— IQS

Throughput

Comparison with RocksDB in terms of ops/sec

4

Device is the bottleneck

» Large dataset
1.1x up to 2x

ROSOSOTOOOZONOO
[ROERIRRRLARRN]

RocksDB mm
Tucana x4

SN S —
aefodoletetotetetotetetotetetotel IR\

IS
20%0%6%6%6%6%6%6% % %% % 20 20 20 20 2020 20 2o e e 0%

OIS
2020202020202 %% %%

o o o o o o
o o] o < N
-

(s/sdoy) indybnoay

of Computar Sciance

”F_“ORTH-ICS

24

Tradeoff: Amplification vs. Randomness (Writes)

» FIO model for I/O pattern of Tucana and RocksDB

» Based on measurements: Tucana has 3.5x less I/O traffic but 49x smaller
random 1/Os

» For two SSD generations Tucana’s approach wins: 4.7x and 3.1x over
RocksDB

SSD (2010) SSD (2015)

_ Write (GB) Avg. rq_size time (sec) time (sec)

Tucana 123 | 8K 133 32

RocksDB 435 884K 623 100
| Ratio | 35x | 49 | 47x | 3x

~ 25 { EORTHLICS

Related Work

» Reducing I/O amplification in LSM-Trees
WiscKey[FAST’16]: compaction only for keys
LSM-trie[ATC'15]: trie of LSM, hash-based structure
VT-Tree[FAST’13]: less I/O via container merging
bLSM[SIGMOD’12]: bloom filters, compaction scheduling

» BetrFS[FAST 15]: B&-Trees for file system

26 FORTHLICS

Conclusions

» Tucana: An efficient key-value store in terms of cycles/op
Target fast storage devices

LSM —> BE: overhead of I/O amplification & compactions
Explicit /O = mmap: overhead of DRAM caching
WAL = CoW: overhead of recovery

» Tucana: Up to 9.2x/7x better efficiency/xput vs. RocksDB
» H-Tucana: Up to 8x/22x better efficiency vs. HBase/Cassandra

27

FOF!IH—IQS

Questions ?

Anastasios Papagiannis
Institute of Computer Science, FORTH — Heraklion, Greece

E-mail:
Web:

Supported by European Commission under FP7 CoherentPaa$S (FP7-ICT-611068), LeanBigData
(FP7-ICT-619606), and NESUS COST Action 1C1305

28 FOF!IH— IQS

