Tucana: Design and Implementation of a
Fast and Efficient Scale-up Key-value store

Anastasios Papagiannis, Giorgos Saloustros,
Pilar Gonzalez-Férez, and Angelos Bilas

.:,Amolcmsd.m

Institute of Computer Science (ICS)

r:,FORTH— lCS Foundation for Research and Technology — Hellas (FORTH)

Greece




Key-value Stores — Important Building Block

» Key-value store: A dictionary for arbitrary key-value pairs
Used extensively: web indexing, social networks, data analytics
Supports inserts, deletes, point (lookup) and range queries (scan)

» Today, key-value stores inefficient
Consume a lot of CPU cycles
Mostly optimized for HDDs — right decision until today
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Challenges

» Overhead is related to several aspects of key-value stores

Indexing data structure
DRAM caching and |/O to devices
Persistence and failure atomicity

» Our goal: improve CPU efficiency of key-value stores
Design for fast storage devices (SSDs)
Bottleneck shifts from device performance to CPU overhead
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Outline of this talk

» Discuss our design and motivate decisions
Indexing data structure
DRAM caching and |/O to devices
Persistence and failure atomicity
H-Tucana: An HBase Integration

» Evaluation
» Conclusions
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Write Optimized Data Structures (WODS)

» Inserts are important for key-value stores
» Need to avoid a single |/O per insert
» Main approach: Buffer writes in some manner

... and use single I/0 to the device for multiple inserts
Examples: LSM-Trees, B&-Trees, Fractal Trees
» Most popular: LSM-Trees

Used by most key-value stores today
Great for HDDs - always perform large sequential I/Os
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LSM-Trees

»  Data in large containers - leads to large/sequential |/O
»  Great for HDDs! However, they require compactions
E Le"_e'o »  Sorting containers to reduce index size and fit in memory
= mmm » High overhead: CPU processing and I/0 amplification
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SSDs vs. HDDs
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Bé-Trees

» B-Tree variant that uses buffering to improve inserts
» Similar complexity as B-Tree for point, range queries
» No compactions —unsorted buffers, full index

» Better CPU overhead and I/O amplification

» Worse I/O randomness and size
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Bé-Trees

» Each internal node has a persistent buffer
» Buffers “log” multiple inserts and use one I/O to device
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Tucana B&-Tree
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Tucana B&-Tree
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Buffered Node Organization

» Searching buffered nodes requires accessing keys on device
» Tucana uses two optimizations for buffered nodes

» 1) Include key prefixes (fixed size)
Eliminates 65%-75% of 1/Os for keys in all queries

» 2) Include hashes for full keys (fixed size)
Eliminates 98% of 1/Os for keys in point queries
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DRAM Caching — Device I/O

» Key-value stores use a user-space DRAM cache
Avoids system calls for hits - Explicit kernel I/O for misses

» However, hits incur overhead in user-space
Both index+data in every traversal — Not important for HDDs
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Alternative: DRAM caching via mmap

» Use multiple regions/containers per device
» Each region contains allocator + multiple indexes

» mmap each region directly to memory
Same layout of metadata + data on device and in memory

» Hits via mapped virtual addresses do not incur overhead
» Misses do not require serialize/deserialize of index
» mmap introduces new challenges
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mmap: Misses Cause Page Faults, Fetches, Evictions

» (1) We can improve inserts
» Inserts require a read-before-write I/0O
» We insert only on newly allocated pages

» We detect and eliminate fetches to newly allocated pages
Requires a kernel module with access to allocator metadata

» (2) Still, no control over size, timing of 1/Os + evictions
We use mmap hints to disable prefetching
Should examine these in detail in future work
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Persistence And Recovery

» Typical for HDDs: Write-Ahead-Logging (WAL)
Sequential I/0 and ability to batch I/Os — both good
However, double writes — first to log, then in-place
Incurs overhead for log management during recovery

» Alternative: Copy-On-Write (CoW)
Instantaneous recovery and amenable to versioning
Write-anywhere approach and modify pointers atomically
Single write, however, more random I/O
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H-Tucana: An Hbase Integration

» Use Tucana to replace HBase’s LSM-based storage engine

» We keep HBase for
Metadata architecture
Fault tolerance
Data distribution
Load balancing
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Outline of this talk

» Discuss our design and motivate decisions
» Evaluation
» Conclusions
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Experimental Setup

» Compare Tucana with RocksDB
H-Tucana with HBase and Cassandra
» Platform
2 * Intel Xeon E5520 with 48GB DRAM in total
4 * Intel X25-E SSDs (32GB) in RAIDO
» YCSB — synthetic workloads
Insert only, read only, and various mixes

» Two datasets
Small dataset fits in memory
Large dataset is twice the size of memory

» We examine
Efficiency - cycles/op
Throughput - ops/s
I/O amplification
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Efficiency

» Improvement over RocksDB in terms of cycles/op
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Throughput

4

Comparison with RocksDB in terms of ops/sec
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» Small dataset
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4.5x on average
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Throughput

Comparison with RocksDB in terms of ops/sec
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Device is the bottleneck
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Tradeoff: Amplification vs. Randomness (Writes)

» FIO model for I/O pattern of Tucana and RocksDB

» Based on measurements: Tucana has 3.5x less I/O traffic but 49x smaller
random 1/Os

» For two SSD generations Tucana’s approach wins: 4.7x and 3.1x over
RocksDB

SSD (2010) SSD (2015)

_ Write (GB) Avg. rq_size time (sec) time (sec)

Tucana 123 | 8K 133 32

RocksDB 435 884K 623 100
| Ratio | 35x | 49 | 47x | 3x
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Related Work

» Reducing I/O amplification in LSM-Trees
WiscKey[FAST’16]: compaction only for keys
LSM-trie[ATC'15]: trie of LSM, hash-based structure
VT-Tree[FAST’13]: less I/O via container merging
bLSM[SIGMOD’12]: bloom filters, compaction scheduling

» BetrFS[FAST 15]: B&-Trees for file system
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Conclusions

» Tucana: An efficient key-value store in terms of cycles/op
Target fast storage devices

LSM —> BE: overhead of I/O amplification & compactions
Explicit /O = mmap: overhead of DRAM caching
WAL = CoW: overhead of recovery

» Tucana: Up to 9.2x/7x better efficiency/xput vs. RocksDB
» H-Tucana: Up to 8x/22x better efficiency vs. HBase/Cassandra
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