Microsoft Research

Filo consolidated consensus as a cloud service

Parisa Jalili Marandi, Christos Gkantsidis, Flavio Junqueira, Dushyanth Narayanan

Consensus

- Enables a set of distributed processes to reach agreement
 - Leader election, Membership
 - Coordinating access to shared objects
 - ≻E.g., Paxos, Chain Replication, Two-Phase commit
- Many distributed systems need consensus

Many distributed systems are moving to cloud

How to implement consensus in a cloud environment?

Isolated consensus

Our Goal: Consolidated Consensus

✓ Lower \$

✓ Efficient server utilization

✓ No management hurdles

Challenges with Consolidated Model

- Multi-tenancy
 - Performance isolation
 - SLA Guarantees: (requests/sec)
 - Users may misestimate their SLA
- Maximise resource usage on servers
 - CPU, Network, Storage

- How to isolate performance and maximize resource usage?
 - Translate SLAs to raw resource usage
 e.g. 10K requests / s → (10% CPU, 10K disk I/O, 80Mbps)
 - 2. Monitor and adjust resource usage

- 1) Provides consensus as a shared multi-tenant service
- 2) Isolates Performance
- 3) Guarantees a minimum SLA
- 4) Optimizes resource usage

Filo at a high level

Admission Request

- 1. Durability mode disk or memory
- 2. Replication degree 3, 5, 7
- 3. Request size in bytes
- 4. Throughput SLA (High-level) in requests / second

- 2. Admission Controller $\mathcal{A} \mathcal{A} \mathcal{A}$
 - 1. SLA Translation
 - 2. Placement
- 3. Resource controller

888

1. Performance Analyser

2. Admission Controller

- 1. SLA Translation
- 2. Placement
- 3. Resource controller

Performance Analyser

- Generates performance profile
 - Similar to [Quasar-SIGPLAN14], [Bazaar-SoCC12], [Matrix-ICAC14].
 Large space to explore
 - 1. Control SLAs
 - 2. Translate high-level user SLAs to resource costs

- Chain Replication [OSDI-2004]
 - Or any other (e.g., Paxos)

1. Performance Analyser

2. Admission Controller

- 1. SLA Translation
- 2. Placement

3. Resource controller

SLA Translation

Tenant is not limited to 512-B requests

1. Performance Analyser

2. Admission Controller

- 1. SLA Translation
- 2. Placement

3. Resource controller

Placement

- Multi-Resource Bin-Packing
 - Greedy approach
 - Respecting objectives and constraints:
 - Replicas of a consensus group on distinct servers

Replica (

However:

Tenant demand may be higher/lower than Resource Budget

Can we change Resource Budget at runtime ? Without violating others SLAs?

- 1. Performance Analyser
- 2. Admission Controller
 - 1. SLA Translation
 - 2. Placement
- 3. Resource controller

Resource Usage at Runtime

Centralized Resource Controller

Tenant	Granted Extra Requests
Alice	10 extra requests/sec Size: 512 B
Bob	5 extra requests/sec Size: 8KB
•••	•••

Optimal resource usage but Slow

- Polynomial with # tenants
- Collect all information centrally

Distributed Resource Controller

Slow computation High resource usage

Head-DRF

Dominant Resource Fairness [NSDI-2011]

Alice: 200 extra requests

ALL-DRF

Alice: 200 extra requests

Evaluating Resource Controller

Message Complexity

Overhead is affordable given the many number of msgs exchanged for the service itself

1. Performance Analyser

2. Admission Controller

- 1. SLA Translation
- 2. Placement

3. Resource controller

Testbed

- · 10 Dell servers each with 10-core Intel Xeon
- · 10 Gbps Mellanox ConnectX-3 NIC
- · 128 GB RAM
- \cdot Hyper threading enabled
- · 2 HDDs
- Hierarchical Switches

Conclusions

- First system to provide consensus as a multi-tenant cloud service
 - A cheaper and convenient alternative for users
 - First distributed resource controller using DRF

