Modular Composition of
Coordination Services

Kfir Lev-Ari', Edward Bortnikov?, Idit Keidar'?, and Alexander Shraer®

guome  EEES] Google




Coordination Services

Doozer

. etcd y‘o‘ G consun

Used for configuration & metadata storage, global locks, leader electlon service
discovery, and more...

Who uses coordination services?

0Id man
led
plper
cnrbnb




Coordination Services Structure

Updates order:
1. X =0 (initially)
2. X=5
X=0
get(X) — (/
set(X,5)
Client 2

Client 1




Coordination Services Semantics

1. Clients see the same order of updates (linearizable updates)
2. Reads might be served from the past

Client 1: Set(X,5)

Initially

X=0" Glient 2 get(X)—0

reads “from the past”



Challenge: Coordination Service over WAN
?

s T

»;:gf . e
_ T ¥ ‘% 2 .
A ;

| Client |




Coordination Services over WAN

[ DC3 Cen’csiE
2
[DC ﬁ} —

— ch
\
DC2 Clients | | _DC1 Clients
Updates Reads Correctness Example
Distributed Service Very slow Fast Yes ACMS, Zeus, Megastore




Coordination Services over WAN

't ) 4 )
DC2 ______»/D DC1
Learner -7 ~ \
/’E‘ S~
- / > /
\1 DC2 Clients | Q{ DC1 Clients |
Updates Reads Correctness Example
Distributed Service Very slow Fast Yes ACMS, Zeus, Megastore
Co-located Service + Learners Slow Fast Yes ZooKeeper, Consul




Coordination Services over WAN

't ) 4 )
DC2 L | Dc1
/ I:I \ “«-—o___ PR > / \
7 I:I [~ S - P -7
L] Learner 1|  “:s<Z  |Learner2 =[]
N oA ST T Nl 4 /
\ DC2 Cllents | \ DC1T Clients ]
Updates Reads | Correctness Example
Distributed Service Very slow Fast Yes ACMS, Zeus, Megastore
Co-located Service + Learners Slow Fast Yes ZooKeeper, Consul
Multiple Co-located services + Learners Fast Fast No Global service discovery




Multiple Services Deployment - Correctness

Cliept 1: set(X,5) get(Y)—0
Initially
X,Y=0

Client 2:  set(Y,3) get(X)—0

e Clients see different order of updates:
Client 1: x=0 —-x=5 —-y=0 —y=3
Client 2: y=0 -»y=3 —x=0 —»x=5




Our Solution: Modular Composition

't ) 4 )
DC2 DC1
/ I:I \ *-——___! | _a=-=- > / I:I\
L] Learner 1 szl |Learner2 T[]
N S s A Y
Composition AV Composition
DC2 Clients DC1 Clients
Updates | Reads | Correctness Example
Distributed Service Very slow | Fast Yes ACMS, Zeus, Megastore
Co-located Service + Learners Slow Fast Yes ZooKeeper, Consul
Multiple Co-located services + Learners Fast Fast No Global service discovery
Modular Composition Fast Fast Yes Our implementation: ZooNet

10



Modular Composition - Algorithm

Linearizable operation (sync) upon switching service instance

Client 1 sync(Y) — get(Y)—3

N set(X,5) .
Initially ;
X,Y=0 g

sync(X)

Client 2 set(Y,3) get(X)—0

e Clients see same order of updates:
y=0 — y=3 — x=0 — x=5

11



ZooNet - Modular Composition of ZooKeepers

/4

~

7
? Learner 1 -

get(/a/b)

get(/a/b)

[sync] get(/c/d)
ZooNet
Client |get(/DC2/a/b)
get(/DC1/c/d)

——
-
-

12



ZooNet - Cost of Consistency

/
DC2
AN

~

? % Learner 1
N

US. ZooNet

Client

Vary locality:

Spatial: % local access

Temporal: # consecutive accesses to same DC

-
_——’
—

-—— -
f’—
-

13



ZooNet Evaluation - Cost of Consistency

1K

reqg/sec o
q 40

100% spatial locality:

Fastest
120 /;4 (inconsist)
100 A
/ ZooNet
80
20 ?,___ﬁ/ Slow -
All Atomic
. | I
0 25 50 75 90 100

%reads

14



ZooNet Evaluation - Cost of Consistency

No temporal locality, varying spatial locality:

.5 50% reads 10 100% reads
T
TN wf
DC2 30 il //kx 80 /
e DC2 /
1K 20— P NN 1K o0 /
req/sec 15 /// Py req/sec 4o A
&
10 20 ol
5 F__._—_;—H 5
QjO 60 70 80 90 100 0 60 70 80 90 100

%local of DC2 clients %local of DC2 clients

Fastest
(inconsist)

ZooNet

Slow -
All Atomic

15




ZooNet Evaluation - Cost of Consistency

With temporal locality, varying spatial locality:

50% reads 100% reads

45 140
40 XK l s
35 /| \ 120F:i#‘

DCo 30 Jrd k,) 100

1K 25 DC2 so

p NN 1K
req/sec *° 60

9 12 /// T req/sec
5 20 r__________b__ﬁ_ﬂ
QjO 60 70 80 90 100 QjO 60 70 80 90 100

%local of DC2 clients %local of DC2 clients

Fastest
(inconsist)

ZooNet

Slow -
All Atomic

16




ZooNet vs. ZooKeeper Evaluation

ZooNet ZooKeeper

DC2 DC1 DC2 DC1

e e A
L & £ & 7 L




ZooNet vs. ZooKeeper Evaluation
With temporal locality, varying spatial locality of DC2 clients:

—&— 25%reads —&— 99%reads
~¥— 90%reads —&— 100%reads
8
7 )\
6 I~
DC2
Throughput i P
Speedup s D
ZooNet/ZooKeeper ;
1
) =
QjO 60 70 80 90 100

%local of DC2 clients



Zookeeper - Server Side Improvement

e We improved ZooKeeper:
o Performance - reads blocked for no reason
o Starvation in read-intensive workloads

e In a nutshell:
o 2 clients connecting to same server blocked each other
o Not required by semantics
o We isolated clients

e Committed into ZooKeeper trunk

See Jira ZooKeeper-2024 for more experiments and details

19


https://issues.apache.org/jira/browse/ZOOKEEPER-2024

1K requests per second

ZooKeeper Improvment: Evaluation
Single ZK of 5 servers, 900 clients:

100% R/W clients: 10% R/W, 90% RO clients:

‘- New Alg B Original Alg
700 I New Alg, R/W Clients [T New Alg, RO Clients
I Old Alg, R/W Clients [ 0Old Alg, RO Clients
600 70 e
600
3.8x
500 T .5 3.9x
S 500110 8.7x £X
(W] 1U. 7 X 1.BX
400 2 i 9:9x X
@ 400
a
300 n
2 300
200 >
£ 200
=
100
100 —l
' o 1.0x
0 ; 8 3- 3.px
0 30 60 90 95 99 100 0 l'ox 130)‘ 16 20 95 99 100

%reads %reads of App R/W

20



Conclusion

y
e <« Performance
y
</ Simplicity
/
«¢ Correctness
e Small change in the client side

e Backward compatible

e Higher locality = Lower cost

Thank youl

+Improving
ZooKeeper
up to x10

21



