Modular Composition of
Coordination Services

Kfir Lev-Ari', Edward Bortnikov?, Idit Keidar'?, and Alexander Shraer®

guome  EEES] Google




Coordination Services
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Used for configuration & metadata storage, global locks, leader electlon service
discovery, and more...

Who uses coordination services?
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Coordination Services Structure

Updates order:
1. X =0 (initially)
2. X=5
X=0
get(X) — (/
set(X,5)
Client 2

Client 1




Coordination Services Semantics

1. Clients see the same order of updates (linearizable updates)
2. Reads might be served from the past

Client 1: Set(X,5)

Initially

X=0" Glient 2 get(X)—0

reads “from the past”



Challenge: Coordination Service over WAN
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Coordination Services over WAN
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Distributed Service Very slow Fast Yes ACMS, Zeus, Megastore




Coordination Services over WAN
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Updates Reads Correctness Example
Distributed Service Very slow Fast Yes ACMS, Zeus, Megastore
Co-located Service + Learners Slow Fast Yes ZooKeeper, Consul




Coordination Services over WAN
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Distributed Service Very slow Fast Yes ACMS, Zeus, Megastore
Co-located Service + Learners Slow Fast Yes ZooKeeper, Consul
Multiple Co-located services + Learners Fast Fast No Global service discovery




Multiple Services Deployment - Correctness

Cliept 1: set(X,5) get(Y)—0
Initially
X,Y=0

Client 2:  set(Y,3) get(X)—0

e Clients see different order of updates:
Client 1: x=0 —-x=5 —-y=0 —y=3
Client 2: y=0 -»y=3 —x=0 —»x=5




Our Solution: Modular Composition
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DC2 Clients DC1 Clients
Updates | Reads | Correctness Example
Distributed Service Very slow | Fast Yes ACMS, Zeus, Megastore
Co-located Service + Learners Slow Fast Yes ZooKeeper, Consul
Multiple Co-located services + Learners Fast Fast No Global service discovery
Modular Composition Fast Fast Yes Our implementation: ZooNet
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Modular Composition - Algorithm

Linearizable operation (sync) upon switching service instance

Client 1 sync(Y) — get(Y)—3

N set(X,5) .
Initially ;
X,Y=0 g

sync(X)

Client 2 set(Y,3) get(X)—0

e Clients see same order of updates:
y=0 — y=3 — x=0 — x=5
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ZooNet - Modular Composition of ZooKeepers
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ZooNet - Cost of Consistency
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ZooNet Evaluation - Cost of Consistency
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ZooNet Evaluation - Cost of Consistency

No temporal locality, varying spatial locality:
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ZooNet Evaluation - Cost of Consistency

With temporal locality, varying spatial locality:

50% reads 100% reads
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ZooNet vs. ZooKeeper Evaluation

ZooNet ZooKeeper
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ZooNet vs. ZooKeeper Evaluation
With temporal locality, varying spatial locality of DC2 clients:
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Zookeeper - Server Side Improvement

e We improved ZooKeeper:
o Performance - reads blocked for no reason
o Starvation in read-intensive workloads

e In a nutshell:
o 2 clients connecting to same server blocked each other
o Not required by semantics
o We isolated clients

e Committed into ZooKeeper trunk

See Jira ZooKeeper-2024 for more experiments and details
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https://issues.apache.org/jira/browse/ZOOKEEPER-2024

1K requests per second

ZooKeeper Improvment: Evaluation
Single ZK of 5 servers, 900 clients:

100% R/W clients: 10% R/W, 90% RO clients:

‘- New Alg B Original Alg
700 I New Alg, R/W Clients [T New Alg, RO Clients
I Old Alg, R/W Clients [ 0Old Alg, RO Clients
600 70 e
600
3.8x
500 T .5 3.9x
S 500110 8.7x £X
(W] 1U. 7 X 1.BX
400 2 i 9:9x X
@ 400
a
300 n
2 300
200 >
£ 200
=
100
100 —l
' o 1.0x
0 ; 8 3- 3.px
0 30 60 90 95 99 100 0 l'ox 130)‘ 16 20 95 99 100

%reads %reads of App R/W

20



Conclusion

y
e <« Performance
y
</ Simplicity
/
«¢ Correctness
e Small change in the client side

e Backward compatible

e Higher locality = Lower cost

Thank youl

+Improving
ZooKeeper
up to x10
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