
Subversive-C: Abusing and
Protecting Dynamic Message

Dispatch

Julian Lettner, Benjamin Kollenda, Andrei Homescu,

Per Larsen, Felix Schuster, Lucas Davi,

Ahmad-Reza Sadeghi, Thorsten Holz, Michael Franz

Control Flows

return jump icall vcall msgSend

canaries

shadow stacks

safestack control-flow integrity

virtual table
randomization

Control Flow Hijacking

addr = Load(A);

Goto(addr);

fn ptr

variable A function foo

Control Flow Hijacking

addr = Load(A);

Goto(addr);

fn ptr

variable A function foo

system(“/bin/sh”)

Objective-C
Good ‘ol C

Smalltalk-style
object orientation

Message Dispatch

C++

A *obj = new A;

obj->foo();

• Caller “calls a method” in object

• Resolved using vtables

• Static class structure

Objective-C

A *obj = [[A alloc] init];

[obj foo];

• Caller “sends a message” to object

• Resolved dynamically at run-time

• Dynamic class structure

Class Mutability

void fooIMP(id self, SEL _cmd) {}

A *obj = [[A alloc] init];

class_addMethod([obj class], @selector(foo),

(IMP) fooIMP, “v@:”);

[obj foo];

Fast

Path

Slow

Path

Object Layout

Attacker Model

• Arbitrary memory read (information disclosure)

• Arbitrary memory write

• No other control flow hijacking
• No code injection

• No code reuse (ROP, COOP, etc.)

Previously: COOP

• COOP: Counterfeit Object-Oriented
Programming

• Counterfeit objects attack for C++

• Reuses existing vtables (fully or partially)

• Reuses whole C++ functions

F. Schuster, Th. Tendyck, Ch. Liebchen, L. Davi, A.-R. Sadeghi, Th. Holz. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. IEEE S&P 2015.

Read-only memory

vptr

object

var 1

var 2

vfptr 1

vtable

vfptr 2

vfptr 3

vfptr 4

Subversive-C
fake

fake

gadget 1

gadget …

gadget N

gadget …

Subversive-C

•What we have
• Arbitrary counterfeit Objective-C objects
• Control flow hijacking

•What we want
• Call malicious system call, e.g., system(“/bin/sh”)

Calling system(“/bin/sh”)

1. Find the address of system() in GOT

2. Set up function call arguments
• Store “/bin/sh” in memory

• Set up argument registers/stack

3. Invoke system() via computed address

Gadgets

Gadget Description

ML-G Dispatch execution to other gadgets

LOAD-R64-G Load register from Objective-C object

R-G Load register from memory

ARITH-G Add two registers

W-G Write result to Objective-C object

INV-G Call function pointer from object

Example: Main Loop Gadget

• Used to invoke other gadgets repeatedly (gadget loops)

• Code from dealloc in NSTextReplacementNode

children = self->children;

counter = 0;

while (children[counter] != 0 && counter < 28) {

[children[counter] release];

counter++;

}

Results

• Successfully applied attack to AppKit on vulnerable PoC
program

• AppKit is used by many popular Mac OS X apps

Defense: Object Layout Integrity

no slow path attack no fast path attack

class

var 1

var n

object
class

super

cache

 methods

super class

isa

flags

nil nil

sel impl

class hmac

hmac

nil

cache

methodsuser forwarder
fwd

fwd hmac

no forwarder attack

sel impl

sel impl

Securing the Slow Path

• 𝐻𝑀𝐴𝐶 𝐾,𝑚 = 𝐻𝑀𝐴𝐶-𝑀𝐷5 𝐾,𝑚

• Checked on every slow path lookup

• 𝐾 is a random 64-bit key stored in execute-only memory

• 𝑚 = &𝑐𝑙𝑎𝑠𝑠 ∥ 𝑖𝑠𝑎 ∥ 𝑠𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 ∥ 𝑓𝑙𝑎𝑔𝑠 ∥ 𝑚𝑒𝑡ℎ𝑜𝑑 𝑙𝑖𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

Securing the Fast Path

• 𝑈𝑀𝐴𝐶
• 𝐻1 𝐾,𝑚 = σ𝑖=0

𝑖<3 𝑚𝐿 𝑖 + 𝐾𝐿 𝑖 ∗ 𝑚𝐻 𝑖 + 𝐾𝐻 𝑖

• 𝐾 is a 192-bit random number stored in execute-only memory

• 𝑚 = &𝑐𝑙𝑎𝑠𝑠 ∥ 𝑠𝑒𝑙 ∥ 𝑖𝑚𝑝𝑙

eXecute-only Memory

• Crucial defense against information leaks

• Store HMAC keys in XoM (write-once or constant data)

• Access via execution

• Can be implemented in hardware or software
• mprotect()-based mechanism

• TLB splitting

• EPT on x86

• ARMv8 native support

Performance Evaluation

• Drop-in replacement for Objective-C runtime shipped by Apple!
• Micro-benchmarks

• iTunes, Pages, etc.

Summary

• Control flow hijacking attack on Objective-C message dispatch

• HMAC-based object integrity defense for Apple Objective-C
runtime

• Low performance overhead (1.54% on real-world applications)

Questions?

Previous joint work open sourced and released into

Hardened Tor Browser for Linux

https://github.com/immunant/selfrando

https://github.com/immunant/selfrando

