Instant OS Updates via Userspace
Checkpoint-and-Restart

Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee,
Taesoo Kim, Pavel Emelyanov

Georgiansiitute
@fTe%h[m@D@@y %’J

OS updates are prevalent

* B B & ©

Featured Top Charts Categories Purchases Updates

1 Update Available

Software Update Pre-release: OS X Update Seed 10.10.2 (14C811) m

Installation instructions
= ' to revert back to your previous system after
ed to erase if necessary. As this is a pre-re... Maore

Software Updater

am Get Windows 10 _ Updated software is available for this
' computer. Do you want to install it now?

* Details of updates

Windows 10 is coming.
Get it for free! f ﬂ 247.5 MB will be downloaded.

Settings... Remind Me Later H Install Now M

For a short time, we're offering a free upgrade to
Windows 10. Learn more.

And OS updates are unavoidable

 Prevent known, state-of-the-art attacks

- Security patches

» Adopt new features

- New |I/O scheduler features

* Improve performance

- Performance patches

|

s

9

¢ Windows7 P00}

Unfortunately, system updates
come at a cost

e Unavoidable downtime

* Potential risk of system failure

Unfortunately, system updates
come at a cost

e Unavoidable downtime

* Potential risk of system failure

THE FINANCIAL AND OTHER COSTS OF DATA
CENTER DOWNTIME

Posted on March 30, 2014 by Mary Hiers

Amazon had 49 minutes of downtime in J:
an estimated 54 million in lost sales, or $8

minute of the outage. When Google went $ /I 09 k pe r m | n Ute

2013, it cost an estimated $545,000 in . .

minuke. obviousty, downtime cois b« [11AAE€N COSES (l0SiNg customers)
losses than small companies, but regardl

an expense nobody wants to face. Here are some other important

facts and Figures.

Example: memcached

e Facebook's memcached servers incur a
downtime of 2-3 hours per machine

- Warming cache (e.g., 120 GB) over the network

Example: memcached

e Facebook's memcached servers incur a
downtime of 2-3 hours per machine

- Warming cache (e.g., 120 GB) over the network

Our approach upda
for 32GB of data fro

tes OS In 3 secs
M v3. 138 tov3.19

for Ubuntu / Fec

ora releases

EXisting practices for OS updates

* Dynamic Kernel Patching (e.g., kpatch, ksplice)

- Problem: only support minor patches

* Rolling Update (e.g., Google, Facebook, etc)

- Problem: inevitable downtime and requires
careful planning

EXisting practices for OS updates

Losing application state is inevitable
— Restoring memcached takes 2-3 hours

* Rolling Update (e.g., Google, Facebook, etc)

- Problem: inevitable downtime and requires
careful planning

EXisting practices for OS updates

Losing application state is inevitable
— Restoring memcached takes 2-3 hours

Goals of this work:
» Support all types of patches
* Least downtime to update new OS
* No kernel source modification

Problems of typical OS update

ST

Problems of typical OS update

ST

1

Problems of typical OS update

ST

Soft reboot 1

S
_

Problems of typical OS update

2-3 hours of downtimE|
! Stop service |

_

Problems of typical OS update

Stop service

O minutes of downtlk
Soft reboot

-

Problems of typical OS update

Stop service

/_\

-10 minutes of downtlk
Soft reboot
—_—

S it pOSSIb|e to keep the

application state?

KUP: Kernel upaate with application
checkpoint-and-restore (C/R)

ST

Soft reboot 1

S
_

KUP: Kernel upaate with application
checkpoint-and-restore (C/R)

Memcached

Soft reboot 1

S
_

KUP: Kernel upaate with application
checkpoint-and-restore (C/R)

Memcached

In-kernel
switch

Start service
Memcahed

S
_

KUP: Kernel upaate with application
checkpoint-and-restore (C/R)

Memcached

In-kernel
switch

Restore
Memcahed

S
_

KUP: Kernel update with application
checkpoint-and-restore (C/R)

[KUP s life cycle]

KUP: Kernel update with application
checkpoint-and-restore (C/R)

[KUP s life cycle]

KUP: Kernel update with application
checkpoint-and-restore (C/R)

[KUP s life cycle]

|I—1 0 minutes of downtirk

Challenge: how to further decrease

the potential downtime?

Techniques to decrease the
downtime

1) Incremental checkpoint

ﬁ/

Techniques to decrease the
downtime

1) Incremental checkpoint

ﬁ/

2) On-demand restore

Techniques to decrease the
downtime

1) Incremental checkpoint

3) FOAM: a
snapshot abstraction

2) On-demand restore

Techniques to decrease the
downtime

1) Incremental checkpoint

RN o
In-kernel
switch
1
e

2) On-demand restore

Techniques to decrease the
downtime

1) Incremental checkpoint

3) FOAM: a
snapshot abstraction

2) On-demand restore

Incremental checkpoint

* Reduces downtime (up to 83.5%)

* Problem: Multiple snapshots increase the restore time

Naive
checkpoint S, S, = Snapshot instance

<..downtime

Timeline -

Incremental checkpoint

* Reduces downtime (up to 83.5%)

* Problem: Multiple snapshots increase the restore time

Naive
checkpoint S, S, = Snapshot instance

<. downtime o

Timeline -

Incremental
checkpoint S,

Incremental checkpoint

* Reduces downtime (up to 83.5%)

* Problem: Multiple snapshots increase the restore time

Naive
checkpoint S, S, = Snapshot instance

<. downtime o

> 4 —~

Timeline 7

Incremental
checkpoint S, 5,

Incremental checkpoint

* Reduces downtime (up to 83.5%)

* Problem: Multiple snapshots increase the restore time

Naive
checkpoint S, S, = Snapshot instance

<. downtime o

Timeline 7

Incremental
checkpoint S, 5, S5

Incremental checkpoint

* Reduces downtime (up to 83.5%)

* Problem: Multiple snapshots increase the restore time

Naive
checkpoint S, S, = Snapshot instance

downtime

‘. ... >
Timeline - rd S

Incremental
checkpoint S, 5, S5 S,

downtime

On-demand restore

* Rebind the memory once the application
accesses it

- Only map the memory region with snapshot
and restart the application

* Decreases the downtime (up to 99.6%)

* Problem: Incompatible with incremental
checkpoint

Problem: both techniques together
result in inefficient application C/R

* During restore, need to map each pages individually
- Individual lookups to find the relevant pages

- Individual page mapping to enable on-demand restore

* An application has 4 pages as
its working set size S,

* Incremental checkpoint has 2
iterations

- Jstiteration = all 4 pages (1, 2, 3, 4) are dumped

- 2ndjteration = 2 pages (2, 4) are dirtied

* [Nncreases the restoration downtime (42.5%)

Problem: both techniques together
result in inefficient application C/R

* During restore, need to map each pages individually
- Individual lookups to find the relevant pages

- Individual page mapping to enable on-demand restore

* An application has 4 pages as AN
its working set size S, < 5,

* Incremental checkpoint has 2 13 24
iterations

- Jstiteration = all 4 pages (1, 2, 3, 4) are dumped
- 2ndjteration = 2 pages (2, 4) are dirtied

* [Nncreases the restoration downtime (42.5%)

New abstraction: file-offset baseo
address mapping (FOAM)

 Flat address space representation for the snapshot

- One-to-one mapping between the address space and the
snapshot

- No explicit lookups for the pages across the snapshots

- Afew map operations to map the entire snapshot with address
space

* Use sparse file representation
- Rely on the concept of holes supported by modern file systems

* Simplifies incremental checkpoint and on-demand restore

Techniques to decrease the
downtime

SN
In-kernel
switch
1

Redundant data copy
* Application C/R copies data back and forth

* Not a good fit for applications with huge memory

Redundant data copy
* Application C/R copies data back and forth

* Not a good fit for applications with huge memory

Redundant data copy
* Application C/R copies data back and forth

* Not a good fit for applications with huge memory

Redundant data copy
* Application C/R copies data back and forth

* Not a good fit for applications with huge memory

Redundant data copy
* Application C/R copies data back and forth

* Not a good fit for applications with huge memory

Redundant data copy
* Application C/R copies data back and forth

* Not a good fit for applications with huge memory

Redundant data copy
* Application C/R copies data back and forth

s it possible to avoid memory copy?

Avoid redundant data copy across

repoot
* Reserve the application's memory across reboot

* Inherently rebind the memory without any copy

Avoid redundant data copy across

repoot
* Reserve the application's memory across reboot

* Inherently rebind the memory without any copy

Reserve the memory—», | < > &
intheOS ~"ooommmmmmomm

Snapshot

-

Avoid redundant data copy across

repoot
* Reserve the application's memory across reboot

* Inherently rebind the memory without any copy

Reserve the same
memory in the new OS

Snapshot

Avoid redundant data copy across

repoot
* Reserve the application's memory across reboot

* Inherently rebind the memory without any copy

Implicitly map the
memory region

Snapshot

-
y:

Avoid redundant data copy across

repoot
* Reserve the application's memory across reboot

* Inherently rebind the memory without any copy

Memory again in use >,

Snapshot

-

Avoid redundant data copy across

repoot
* Reserve the application's memory across reboot

* Inherently rebind the memory without any copy
Challenge: how to notify the newer

Snapshot

Persist physical pages (PPP) without
OS modification

* Reserve virtual-to-physical mapping information

- Static instrumentation of the OS binary

- Inject our own memory reservation function, then
further boot the OS

* Handle page-faults for the restored application
- Dynamic kernel instrumentation

- Inject our own page fault handler function for
memory binding

Persist physical pages (PPP) without
OS modification

* Reserve virtual-to-physical mapping information

ol 1 ¢ 1 1 1 r .1 rNr— 1

* No explicit memory copy

* Does not require any kernel source modification

| —

- Dynamic kernel instrumentation

- Inject our own page fault handler function for
memory binding

Implementation

* Application C/R = criu
- Works at the namespace level
* In-kernel switch = kexec system call

- A mini boot loader that bypasses BIOS while booting

Component Lines of code

criu/ on-demand restore 810 lines of C

criu/ FOAM 950 lines of C

criu/ PPP 600 lines of C

KUP systemd, init 1040 lines of Python/Bash
criu/ others, kexec(), etc. 150 lines of C

Total 3,550 lines of code

Fvaluation

* How effective is KUP's approach compared to
the in-kernel hot patching?

* What is the effective performance of each
technique during the update?

KUP can support major and minor

-’

Upaates in Ubuntu
* KUP supports 23 minor/4 major updates (v3.17-v4.1)

* However, kpatch can only update 2 versions

- e.g., layout change in data structure

kpatch failure scenarios

errors

50 - = I 0 b =
40 - . S
30 - I i ' 10 o
20 - = |- SR
10 - TN 5 S E S = o Lema
.‘ o e S - . . . g]
G — - N _ = N
. v _ . . _ . . .
U | . rs N ¥ K < ..
A /i LGN D M NSRS IS 08 M NE M-I DE N>
SRR A A G A -
' ons®) ws®
3.13.0-x 3.16.0-x 3.19.0-x
,,
May 2014 June 2015

build/diff errors O #layout errors B #static local errors

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic — SSD

Incremental checkpoint - SSD

Bandwidth (MB)

On-demand restore - SSD ||
150
FoAM -ssD

!\/‘

Basic - RP-RAMFS [N 100 |-
Incremental checkpoint - RP- Basic - SSD
RAMFS - 50
On-demand restore - RP-RAMFS |
0 I I I I I I
FOAM - RP-RAMFS [l 190 200 210 220 230 240 250
PP W Timeline (sec)

=

10 20 30 40 50
m Downtime (sec)

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic — SSD

Incremental checkpoint - SSD

Bandwidth (MB)

On-demand restore - SSD ||
150
FoaMm -ssD

N [

Basic - RP-RAMFS [N 100 |-
|ncrementa| checkp@int — RP- |ncrementa| ChECprint = SSD
RAMFS — 50 -
On-demand restore - RP-RAMFS |
0 | | | | | J
FOAM - RP-RAMFS [l 190 200 210 220 230 240 250
PP W Timeline (sec)

=

10 20 30 40 50
m Downtime (sec)

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic — SSD

Incremental checkpoint - SSD

Bandwidth (MB)

On-demand restore - SSD | [N
150
FOAM -SSD
Basic - RP-RAMFS [100 - \
Incremental checkpoint — RP- On-demand restore -|SSD
RAMFS — 50 -
On-demand restore - RP-RAMFS |
0 | | I I I
FOAM - RP-RAMFS [l 190 200 210 220 230 240 250
e Timeline (sec)

=

10 20 30 40 50
m Downtime (sec)

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic — SSD

Incremental checkpoint - SSD

On-demand restore - SSD

FOAM - 55D

Basic - RP-RAMFS

Incremental checkpoint - RP-
RAMFS

On-demand restore - RP-RAMFS
FOAM — RP-RAMES

PPP

=

10

150

e

100 [

50

0

Bandwidth (MB)

FOAM - SSD

190

20 30 40
m Downtime (sec)

50

200

210 220 230

Timeline (sec)

240

250

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic — SSD

Incremental checkpoint - SSD

On-demand restore - SSD

FOAM - 55D

Basic - RP-RAMFS

Incremental checkpoint - RP-
RAMFS

On-demand restore - RP-RAMFS
FOAM — RP-RAMES

PPP

=

10

150

s

100 [

50

0

Bandwidth (MB)

Basic - RP-RAMFS

)

~ —

190

20 30 40
m Downtime (sec)

50

200

210 220 230

Timeline (sec)

240

250

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic — SSD

Incremental checkpoint - SSD

Bandwidth (MB)

On-demand restore - SSD ||
150
FoaMm -ssD
’—-" e ——— -
Basic - RP-RAMFS [N 100 W
|ncrementa| checkp@int — RP- |ncrementa| ChECprint = RP'RAM FS
RAMFS — 50 -
On-demand restore - RP-RAMFS | KI
0 | | | | J
FOAM - RP-RAMFS [l 190 200 210 220 230 240 250
e Timeline (sec)

=

10 20 30 40 50
m Downtime (sec)

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic — SSD

Incremental checkpoint - SSD

Bandwidth (MB)

On-demand restore - SSD ||
150
FoAM -ssD

—— r\—————_\M p———]

Basic - RP-RAMFS [100 -
Incremental checkpoint - RP- On-demand restore - RP-RAMFS
RAMFS — 50 -
On-demand restore - RP-RAMFS | I
0 | J I I I I I
FOAM - RP-RAMFS [l 190 200 210 220 230 240 250
e Timeline (sec)

=

10 20 30 40 50
m Downtime (sec)

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic — SSD

Incremental checkpoint - SSD

Bandwidth (MB)

On-demand restore - SSD ||
150
FoAM -ssD N
Basic - RP-RAMFS [100 - \/\
Incremental checkpoint - RP- FOAM - RP-RAMFS
RAMFS — 50 -
On-demand restore - RP-RAMFS | \/
0 I I I I I
FOAM - RP-RAMFS | [l 190 200 210 220 230 240 250
e Timeline (sec)

=

10 20 30 40 50
m Downtime (sec)

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic - SSD

Incremental checkpoint - SSD
On-demand restore — SSD
FOAM - SSD

Basic - RP-RAMFS

Incremental checkpoint - RP-
RAMFS

On-demand restore - RP-RAMFS

FOAM - RP-RAMEFES

PPP

Bandwidth (MB)

PPP

I—
150
I -
. 100 |- /
] 50 |
-
0 I
O 190 200
O

=

10 20 30 40 50
m Downtime (sec)

210 220 230

Timeline (sec)

240

250

Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance

Basic - SSD

Incremental checkpoint - SSD |

On-demand restore - SSD
FOAM - SSD

Basic - RP-RAMFS

Incremental checkpoint - RP-
RAMFS

On-demand restore - RP-RAMFS
FOAM — RP-RAMES

PPP

\ Basic - SSD /

Y \Uncremental checkpoint-SSD [

\ On-demand restore - $SD

V7 _FOAM - SSD /

]Basic - RP-RAMFS

~\ /incremental checkpoint - RP-RAMFS

\ / On-demand restore - RP-RAMFS

/ FOAM - RP-RAMFS

\ / PPP

=

m Downtime (sec)

200 210 220 230 240 250

Timeline (sec)

Limitations

* KUP does not support checkpoint ana
restore all socket implementations

- TCP, UDP and netlink are supported

* Failure during restoration

- System call is removal or interface
modification

Demo

sSummary

* KUP: a simple update mechanism with
application checkpoint-and-restore (C/R)

* Employs various technigues:

- New data abstraction for application C/R
- Fast in-kernel switching technique

- A simple mechanism to persist the memory

sSummary

* KUP: a simple update mechanism with
application checkpoint-and-restore (C/R)

* Employs various technigues:

- New data abstraction for application C/R
- Fast in-kernel switching technique

- A simple mechanism to persist the memory

Thank you!

Backup Slides

Handling in-kernel states

* Handles namespace and cgroups

* ptrace() syscall to handle the blocking system calls,
timers, registers etc.

* Parasite code to fetch / put the application's states

* /proc file system exposes the required information
for application C/R

* Anew mode (TCP_REPAIR) allows handling the TCP
connections

What cannot be checkpointeo

* X171 applications
* Tasks with debugger attachea

* Tasks running in compat mode (32 bit)

Possible changes after
application C/R

* Per-task statistics

* Namespace IDs

* Process start time

* Mount point IDs

e Socket IDs (st ino)

* VDSO

Suitable applications

* Suitable for all kinds of applications
* PPP approach supports all types of applications

- May fail to restore on the previous kernel

* FOAM is not a good candidate for write-
intensive applications

- More confidence in safely restoring the
application on the previous kernel

PPP works effectively
* FOAM on SSD - slow
* FOAM on RP-RAMFES = space inefficient

90
30
70
60
50
40
30
20
10

Downtime (sec)

0 8 16 24 32 40 48 56 64 72
WSS (GB) with 50% write

PPP works effectively

* FOAM on SSD - slow
* FOAM on RP-RAMFES = space inefficient

Downtime (sec)

90
30
/70
60
50
40 | 5 5 | ;

30 R R S IR
20 | | | | | | f
10

0 8 16 24 32 40 48 56 64 72
WSS (GB) with 50% write

PPP works effectively

* FOAM on SSD - slow
* FOAM on RP-RAMFES = space inefficient

Downtime (sec)

00 gu oo U IR OSSOSO
30 = —@— FOAM-SSD . . B
70 b= == FOAM - RP-RAMFS o .~ o
60 | J— R i S SRR
50 b= T T IR s . SRR T
40 = Dutofmemorerror
30 T
20k - e e S e e S

10k L i S e

0 8 16 24 32 40 48 56 64 72
WSS (GB) with 50% write

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	page22 (1)
	page22 (2)
	page22 (3)
	page22 (4)
	page22 (5)
	page22 (6)
	page22 (7)
	page22 (8)
	page22 (9)
	Slide 67
	Slide 68
	Slide 69
	page26 (1)
	page26 (2)
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	page32 (1)
	page32 (2)
	page32 (3)

