
Instant OS Updates via Userspace
Checkpoint-and-Restart

Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee,
Taesoo Kim, Pavel Emelyanov

OS updates are prevalent

And OS updates are unavoidable

● Prevent known, state-of-the-art attacks
– Security patches

● Adopt new features
– New I/O scheduler features

● Improve performance
– Performance patches

Unfortunately, system updates
come at a cost

● Unavoidable downtime
● Potential risk of system failure

Unfortunately, system updates
come at a cost

● Unavoidable downtime
● Potential risk of system failure

$109k per minute
Hidden costs (losing customers)

Example: memcached

● Facebook's memcached servers incur a
downtime of 2-3 hours per machine
– Warming cache (e.g., 120 GB) over the network

Example: memcached

● Facebook's memcached servers incur a
downtime of 2-3 hours per machine
– Warming cache (e.g., 120 GB) over the network

Our approach updates OS in 3 secs
for 32GB of data from v3.18 to v3.19

for Ubuntu / Fedora releases

Existing practices for OS updates

● Dynamic Kernel Patching (e.g., kpatch, ksplice)

– Problem: only support minor patches

● Rolling Update (e.g., Google, Facebook, etc)

– Problem: inevitable downtime and requires
careful planning

Existing practices for OS updates

● Dynamic Kernel Patching (e.g., kpatch, ksplice)

– Problem: only support minor patches

● Rolling Update (e.g., Google, Facebook, etc)

– Problem: inevitable downtime and requires
careful planning

Losing application state is inevitable
 → Restoring memcached takes 2-3 hours

Existing practices for OS updates

● Dynamic Kernel Patching (e.g., kpatch, ksplice)

– Problem: only support minor patches

● Rolling Update (e.g., Google, Facebook, etc)

– Problem: inevitable downtime and requires
careful planning

Losing application state is inevitable
 → Restoring memcached takes 2-3 hours

Goals of this work:
● Support all types of patches
● Least downtime to update new OS
● No kernel source modification

Problems of typical OS update

OS

Memcached

OSOS OSStop service

Problems of typical OS update

OS

Memcached

OS

New OS

OS OSStop service

Soft reboot

Problems of typical OS update

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

Problems of typical OS update

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

2-3 hours of downtime

Problems of typical OS update

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

2-3 hours of downtime

2-10 minutes of downtime

Problems of typical OS update

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

Is it possible to keep the

application state?

2-3 hours of downtime

2-10 minutes of downtime

OS updates loose application states

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

KUP: Kernel update with application
checkpoint-and-restore (C/R)

OS updates loose application states

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

Memcached

Checkpoint

KUP: Kernel update with application
checkpoint-and-restore (C/R)

OS updates loose application states

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

Memcached

Memcahed

In-kernel
switch

Checkpoint

KUP: Kernel update with application
checkpoint-and-restore (C/R)

OS updates loose application states

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

Memcached

Memcahed

In-kernel
switch

Checkpoint

Restore

KUP: Kernel update with application
checkpoint-and-restore (C/R)

OS updates loose application states

Stop service

Start service

Checkpoint

Restore

KUP's life cycle

KUP: Kernel update with application
checkpoint-and-restore (C/R)

In-kernel
switch

OS updates loose application states

Stop service

Start service

Checkpoint

Restore

KUP's life cycle

KUP: Kernel update with application
checkpoint-and-restore (C/R)

In-kernel
switch

1-10 minutes of downtime

OS updates loose application states

New OSNew OS

Stop service

Start service

Checkpoint

Restore

KUP's life cycle

KUP: Kernel update with application
checkpoint-and-restore (C/R)

In-kernel
switch

Challenge: how to further decrease

the potential downtime?

1-10 minutes of downtime

Techniques to decrease the
downtime

Checkpoint

Restore

In-kernel
switch

1) Incremental checkpoint

Techniques to decrease the
downtime

Checkpoint

Restore

In-kernel
switch

1) Incremental checkpoint

2) On-demand restore

Techniques to decrease the
downtime

Checkpoint

Restore

In-kernel
switch

1) Incremental checkpoint

2) On-demand restore

3) FOAM: a
snapshot abstraction

Techniques to decrease the
downtime

Checkpoint

Restore

In-kernel
switch

1) Incremental checkpoint

2) On-demand restore

3) FOAM: a
snapshot abstraction

4) PPP: reuse memory
without an explicit dump

Techniques to decrease the
downtime

Checkpoint

Restore

In-kernel
switch

1) Incremental checkpoint

2) On-demand restore

3) FOAM: a
snapshot abstraction

4) PPP: reuse memory
without an explicit dump

Incremental checkpoint

Timeline

S1

● Reduces downtime (up to 83.5%)
● Problem: Multiple snapshots increase the restore time

Naive
checkpoint

downtime

Si Snapshot instance→

Incremental checkpoint

Timeline

S1

S1

● Reduces downtime (up to 83.5%)
● Problem: Multiple snapshots increase the restore time

Naive
checkpoint

Incremental
checkpoint

downtime

Si Snapshot instance→

Incremental checkpoint

Timeline

S1

S1
S2

● Reduces downtime (up to 83.5%)
● Problem: Multiple snapshots increase the restore time

Naive
checkpoint

Incremental
checkpoint

downtime

Si Snapshot instance→

Incremental checkpoint

Timeline

S1

S1
S2 S3

● Reduces downtime (up to 83.5%)
● Problem: Multiple snapshots increase the restore time

Naive
checkpoint

Incremental
checkpoint

downtime

Si Snapshot instance→

Incremental checkpoint

Timeline

S1

S1
S2 S3

● Reduces downtime (up to 83.5%)
● Problem: Multiple snapshots increase the restore time

Naive
checkpoint

Incremental
checkpoint S4

downtime

downtime

Si Snapshot instance→

On-demand restore
● Rebind the memory once the application

accesses it

– Only map the memory region with snapshot
and restart the application

● Decreases the downtime (up to 99.6%)
● Problem: Incompatible with incremental

checkpoint

Problem: both techniques together
result in inefficient application C/R

● During restore, need to map each pages individually

– Individual lookups to find the relevant pages
– Individual page mapping to enable on-demand restore

S1
S1

2 43

● An application has 4 pages as
its working set size

● Incremental checkpoint has 2
iterations

– 1st iteration all 4 pages (1, 2, 3, 4) are dumped→

– 2nd iteration 2 pages (2, 4) are dirtied→

1

● Increases the restoration downtime (42.5%)

Problem: both techniques together
result in inefficient application C/R

● During restore, need to map each pages individually

– Individual lookups to find the relevant pages
– Individual page mapping to enable on-demand restore

S1
S1

S2

3 2 4

● An application has 4 pages as
its working set size

● Incremental checkpoint has 2
iterations

– 1st iteration all 4 pages (1, 2, 3, 4) are dumped→

– 2nd iteration 2 pages (2, 4) are dirtied→

1

● Increases the restoration downtime (42.5%)

New abstraction: file-offset based
address mapping (FOAM)

● Flat address space representation for the snapshot
– One-to-one mapping between the address space and the

snapshot
– No explicit lookups for the pages across the snapshots

– A few map operations to map the entire snapshot with address
space

● Use sparse file representation
– Rely on the concept of holes supported by modern file systems

● Simplifies incremental checkpoint and on-demand restore

Techniques to decrease the
downtime

Checkpoint

Restore

In-kernel
switch

1) Incremental checkpoint

2) On-demand restore

3) FOAM: a
snapshot abstraction

4) PPP: reuse memory
without an explicit dump

Redundant data copy

Running Checkpoint
In-kernel

switch
Restore Running

OS

Running

● Application C/R copies data back and forth
● Not a good fit for applications with huge memory

Memcached

RAM
2 431

Redundant data copy

Running Checkpoint
In-kernel

switch
Restore Running

S1Snapshot
2 431

OS

Checkpoint

● Application C/R copies data back and forth
● Not a good fit for applications with huge memory

RAM

Memcached

Redundant data copy

Running Checkpoint
In-kernel

switch
Restore Running

S1Snapshot
2 431

OS

In-kernel
switch

New OS

● Application C/R copies data back and forth
● Not a good fit for applications with huge memory

Memcached

RAM

Memcached

Redundant data copy

Running Checkpoint
In-kernel

switch
Restore Running

S1Snapshot
2 431

OS

Restore

New OS

● Application C/R copies data back and forth
● Not a good fit for applications with huge memory

Memcached

RAM
2 431

Memcached

Redundant data copy

Running Checkpoint
In-kernel

switch
Restore Running

S1Snapshot
2 431

OS

Running

New OS

● Application C/R copies data back and forth
● Not a good fit for applications with huge memory

MemcachedMemcached

RAM
2 431

Memcached

Redundant data copy

Running Checkpoint
In-kernel

switch
Restore Running

S1Snapshot
2 431

OS

Running

New OS

● Application C/R copies data back and forth
● Not a good fit for applications with huge memory

MemcachedMemcached

RAM
2 431

Memcached

Dump data Read data

Redundant data copy

Running Checkpoint
In-kernel

switch
Restore Running

S1Snapshot
2 431

OS

Running

New OS

● Application C/R copies data back and forth
● Not a good fit for applications with huge memory

Memcached MemcachedMemcached

RAM
2 431

MemcachedIs it possible to avoid memory copy?

Dump data Read data

Avoid redundant data copy across
reboot

Running Checkpoint
In-kernel

switch
Restore Running

OS

Running

● Reserve the application's memory across reboot
● Inherently rebind the memory without any copy

Memcached

RAM
2 431Memory actively used

Avoid redundant data copy across
reboot

Running Checkpoint
In-kernel

switch
Restore Running

S1

Snapshot

OS

Checkpoint

● Reserve the application's memory across reboot
● Inherently rebind the memory without any copy

RAM
2 431

Memcached

Reserve the memory
in the OS

Avoid redundant data copy across
reboot

Running Checkpoint
In-kernel

switch
Restore Running

S1

Snapshot

OS

In-kernel
switch

New OSOld OS

● Reserve the application's memory across reboot
● Inherently rebind the memory without any copy

Memcached

RAM
2 431

Memcached

Reserve the same
memory in the new OS

Avoid redundant data copy across
reboot

Running Checkpoint
In-kernel

switch
Restore Running

S1

Snapshot

OS

Restore

New OSOld OS

● Reserve the application's memory across reboot
● Inherently rebind the memory without any copy

Memcached

RAM
2 431

Memcached

Implicitly map the
memory region

Avoid redundant data copy across
reboot

Running Checkpoint
In-kernel

switch
Restore Running

S1

Snapshot

OS

Running

New OSOld OS

● Reserve the application's memory across reboot
● Inherently rebind the memory without any copy

MemcachedMemcached

RAM
2 431

Memcached

Memory again in use

Avoid redundant data copy across
reboot

Running Checkpoint
In-kernel

switch
Restore Running

S1

Snapshot

OS

Running

New OSOld OS

● Reserve the application's memory across reboot
● Inherently rebind the memory without any copy

Memcached MemcachedMemcached

RAM
2 431

MemcachedChallenge: how to notify the newer

OS without modifying its source?
Memory again in use

Persist physical pages (PPP) without
OS modification

● Reserve virtual-to-physical mapping information

– Static instrumentation of the OS binary
– Inject our own memory reservation function, then

further boot the OS
● Handle page-faults for the restored application

– Dynamic kernel instrumentation
– Inject our own page fault handler function for

memory binding

Persist physical pages (PPP) without
OS modification

● Reserve virtual-to-physical mapping information

– Static instrumentation of the OS binary
– Inject our own memory reservation function, then

further boot the OS
● Handle page-faults for the restored application

– Dynamic kernel instrumentation
– Inject our own page fault handler function for

memory binding

● No explicit memory copy
● Does not require any kernel source modification

Implementation

● Application C/R → criu
– Works at the namespace level

● In-kernel switch → kexec system call
– A mini boot loader that bypasses BIOS while booting

Evaluation

● How effective is KUP's approach compared to
the in-kernel hot patching?

● What is the effective performance of each
technique during the update?

KUP can support major and minor
updates in Ubuntu

● KUP supports 23 minor/4 major updates (v3.17–v4.1)
● However, kpatch can only update 2 versions

– e.g., layout change in data structure

kpatch failure scenarios

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

Basic - SSD

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

Incremental checkpoint - SSD

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

On-demand restore - SSD

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

FOAM - SSD

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

Basic - RP-RAMFS

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

Incremental checkpoint - RP-RAMFS

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

On-demand restore - RP-RAMFS

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

FOAM - RP-RAMFS

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

0

50

100

150

190 200 210 220 230 240 250

Bandwidth (MB)

Timeline (sec)

PPP

Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance

Basic - SSD

Incremental checkpoint - SSD

On-demand restore - SSD

FOAM - SSD

Basic - RP-RAMFS

Incremental checkpoint - RP-RAMFS

On-demand restore - RP-RAMFS

FOAM - RP-RAMFS

200 210 220 230 240 250

Timeline (sec)

PPP

Limitations

● KUP does not support checkpoint and
restore all socket implementations

– TCP, UDP and netlink are supported
● Failure during restoration

– System call is removal or interface
modification

Demo

Summary

● KUP: a simple update mechanism with
application checkpoint-and-restore (C/R)

● Employs various techniques:
– New data abstraction for application C/R
– Fast in-kernel switching technique
– A simple mechanism to persist the memory

Summary

● KUP: a simple update mechanism with
application checkpoint-and-restore (C/R)

● Employs various techniques:
– New data abstraction for application C/R
– Fast in-kernel switching technique
– A simple mechanism to persist the memory

Thank you!

Backup Slides

Handling in-kernel states

● Handles namespace and cgroups
● ptrace() syscall to handle the blocking system calls ,

timers, registers etc.
● Parasite code to fetch / put the application's states
● /proc file system exposes the required information

for application C/R
● A new mode (TCP_REPAIR) allows handling the TCP

connections

What cannot be checkpointed

● X11 applications
● Tasks with debugger attached
● Tasks running in compat mode (32 bit)

Possible changes after
application C/R

● Per-task statistics
● Namespace IDs
● Process start time
● Mount point IDs
● Socket IDs (st_ino)
● VDSO

Suitable applications

● Suitable for all kinds of applications
● PPP approach supports all types of applications

– May fail to restore on the previous kernel
● FOAM is not a good candidate for write-

intensive applications

– More confidence in safely restoring the
application on the previous kernel

PPP works effectively

0
10
20
30
40
50
60
70
80
90

0 8 16 24 32 40 48 56 64 72

D
ow

nt
im

e
(s

ec
)

WSS (GB) with 50% write

FOAM - SSD

● FOAM on SSD slow→

● FOAM on RP-RAMFS space inefficient→

PPP works effectively

0
10
20
30
40
50
60
70
80
90

0 8 16 24 32 40 48 56 64 72

D
ow

nt
im

e
(s

ec
)

WSS (GB) with 50% write

Out of memory error

FOAM - SSD
FOAM - RP-RAMFS

● FOAM on SSD slow→

● FOAM on RP-RAMFS space inefficient→

PPP works effectively

0
10
20
30
40
50
60
70
80
90

0 8 16 24 32 40 48 56 64 72

D
ow

nt
im

e
(s

ec
)

WSS (GB) with 50% write

Out of memory error

FOAM - SSD
FOAM - RP-RAMFS
PPP

● FOAM on SSD slow→

● FOAM on RP-RAMFS space inefficient→

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	page22 (1)
	page22 (2)
	page22 (3)
	page22 (4)
	page22 (5)
	page22 (6)
	page22 (7)
	page22 (8)
	page22 (9)
	Slide 67
	Slide 68
	Slide 69
	page26 (1)
	page26 (2)
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	page32 (1)
	page32 (2)
	page32 (3)

