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OS updates are prevalent



And OS updates are unavoidable

● Prevent known, state-of-the-art attacks
– Security patches

● Adopt new features 
– New I/O scheduler features

● Improve performance
– Performance patches





Unfortunately, system updates 
come at a cost

● Unavoidable downtime
● Potential risk of system failure
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Our approach updates OS in 3 secs
for 32GB of data from v3.18 to v3.19

for Ubuntu / Fedora releases
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Existing practices for OS updates

● Dynamic Kernel Patching (e.g., kpatch, ksplice)

– Problem: only support minor patches

● Rolling Update (e.g., Google, Facebook, etc)

– Problem: inevitable downtime and requires 
careful planning

Losing application state is inevitable
 → Restoring memcached takes 2-3 hours

Goals of this work:
● Support all types of patches            
● Least downtime to update new OS
● No kernel source modification        
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Problems of typical OS update

OS

Memcached

OS

New OSNew OS

Memcached

OS OSStop service

Soft reboot

Start service

Is it possible to keep the

application state?

2-3 hours of downtime

2-10 minutes of downtime
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OS updates loose application states

New OSNew OS

Stop service

Start service

Checkpoint

Restore

KUP's life cycle

KUP: Kernel update with application
checkpoint-and-restore (C/R)

In-kernel
switch

Challenge: how to further decrease

the potential downtime?

1-10 minutes of downtime
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On-demand restore
● Rebind the memory once the application 

accesses it

– Only map the memory region with snapshot 
and restart the application

● Decreases the downtime (up to 99.6%)
● Problem: Incompatible with incremental 

checkpoint



Problem: both techniques together 
result in inefficient application C/R

● During restore, need to map each pages individually

– Individual lookups to find the relevant pages
– Individual page mapping to enable on-demand restore

S1
S1

2 43

● An application has 4 pages as 
its working set size

● Incremental checkpoint has 2 
iterations

– 1st iteration  all 4 pages (1, 2, 3, 4) are dumped→

– 2nd iteration  2 pages (2, 4) are dirtied→

1

● Increases the restoration downtime (42.5%)



Problem: both techniques together 
result in inefficient application C/R

● During restore, need to map each pages individually

– Individual lookups to find the relevant pages
– Individual page mapping to enable on-demand restore

S1
S1

S2

3 2 4

● An application has 4 pages as 
its working set size

● Incremental checkpoint has 2 
iterations

– 1st iteration  all 4 pages (1, 2, 3, 4) are dumped→

– 2nd iteration  2 pages (2, 4) are dirtied→

1

● Increases the restoration downtime (42.5%)



New abstraction: file-offset based 
address mapping (FOAM)

● Flat address space representation for the snapshot
– One-to-one mapping between the address space and the 

snapshot
– No explicit lookups for the pages across the snapshots

– A few map operations to map the entire snapshot with address 
space

● Use sparse file representation
– Rely on the concept of holes supported by modern file systems

● Simplifies incremental checkpoint and on-demand restore



Techniques to decrease the 
downtime
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1) Incremental checkpoint

2) On-demand restore

3) FOAM: a 
snapshot abstraction

4) PPP: reuse memory
without an explicit dump
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Persist physical pages (PPP) without 
OS modification

● Reserve virtual-to-physical mapping information

– Static instrumentation of the OS binary
– Inject our own memory reservation function, then 

further boot the OS
● Handle page-faults for the restored application

– Dynamic kernel instrumentation
– Inject our own page fault handler function for 

memory binding



Persist physical pages (PPP) without 
OS modification

● Reserve virtual-to-physical mapping information

– Static instrumentation of the OS binary
– Inject our own memory reservation function, then 

further boot the OS
● Handle page-faults for the restored application

– Dynamic kernel instrumentation
– Inject our own page fault handler function for 

memory binding

● No explicit memory copy
● Does not require any kernel source modification



Implementation

● Application C/R  → criu
– Works at the namespace level

● In-kernel switch  → kexec system call
– A mini boot loader that bypasses BIOS while booting



Evaluation

● How effective is KUP's approach compared to 
the in-kernel hot patching?

● What is the effective performance of each 
technique during the update?



KUP can support major and minor 
updates in Ubuntu

● KUP supports 23 minor/4 major updates (v3.17–v4.1) 
● However, kpatch can only update 2 versions

– e.g., layout change in data structure

kpatch failure scenarios
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Updating OS with memcached
● PPP has the least degradation
● Storage also affects the performance
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Limitations

● KUP does not support checkpoint and 
restore all socket implementations

– TCP, UDP and netlink are supported
● Failure during restoration

– System call is removal or interface 
modification



Demo



Summary

● KUP: a simple update mechanism with 
application checkpoint-and-restore (C/R)

● Employs various techniques:
– New data abstraction for application C/R
– Fast in-kernel switching technique
– A simple mechanism to persist the memory



Summary

● KUP: a simple update mechanism with 
application checkpoint-and-restore (C/R)

● Employs various techniques:
– New data abstraction for application C/R
– Fast in-kernel switching technique
– A simple mechanism to persist the memory

Thank you!



Backup Slides



Handling in-kernel states

● Handles namespace and cgroups
● ptrace() syscall  to handle the blocking system calls , 

timers, registers etc. 
● Parasite code to fetch / put the application's states
● /proc file system exposes the required information 

for application C/R
● A new mode (TCP_REPAIR) allows handling the TCP 

connections



What cannot be checkpointed

● X11 applications
● Tasks with debugger attached
● Tasks running in compat mode (32 bit)



Possible changes after
application C/R

● Per-task statistics
● Namespace IDs
● Process start time
● Mount point IDs
● Socket IDs (st_ino)
● VDSO



Suitable applications

● Suitable for all kinds of applications
● PPP approach supports all types of applications

– May fail to restore on the previous kernel
● FOAM is not a good candidate for write-

intensive applications

– More confidence in safely restoring the 
application on the previous kernel
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