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OS updates are prevalent
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Featured Top Charts Categories Purchases Updates

1 Update Available

Software Update Pre-release: OS X Update Seed 10.10.2 (14C811) m

Installation instructions
= ' to revert back to your previous system after
ed to erase if necessary. As this is a pre-re... Maore

Software Updater

am Get Windows 10 _ Updated software is available for this
' computer. Do you want to install it now?

* Details of updates

Windows 10 is coming.
Get it for free! f ﬂ 247.5 MB will be downloaded.

Settings... Remind Me Later H Install Now M

For a short time, we're offering a free upgrade to
Windows 10. Learn more.



And OS updates are unavoidable

 Prevent known, state-of-the-art attacks

- Security patches

» Adopt new features

- New |I/O scheduler features

* Improve performance

- Performance patches
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Unfortunately, system updates
come at a cost

e Unavoidable downtime

* Potential risk of system failure
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come at a cost

e Unavoidable downtime

* Potential risk of system failure

THE FINANCIAL AND OTHER COSTS OF DATA
CENTER DOWNTIME

Posted on March 30, 2014 by Mary Hiers

Amazon had 49 minutes of downtime in J:
an estimated 54 million in lost sales, or $8

minute of the outage. When Google went $ /I 09 k pe r m | n Ute

2013, it cost an estimated $545,000 in . .

minuke. obviousty, downtime cois b« [ 11AAE€N COSES (l0SiNg customers)
losses than small companies, but regardl

an expense nobody wants to face. Here are some other important

facts and Figures.



Example: memcached

e Facebook's memcached servers incur a
downtime of 2-3 hours per machine

- Warming cache (e.g., 120 GB) over the network
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Our approach upda
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EXisting practices for OS updates

* Dynamic Kernel Patching (e.g., kpatch, ksplice)

- Problem: only support minor patches

* Rolling Update (e.g., Google, Facebook, etc)

- Problem: inevitable downtime and requires
careful planning
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EXisting practices for OS updates

Losing application state is inevitable
— Restoring memcached takes 2-3 hours

Goals of this work:
» Support all types of patches
* Least downtime to update new OS
* No kernel source modification



Problems of typical OS update
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Problems of typical OS update

Stop service

/_\

-10 minutes of downtlk
Soft reboot
—_—

S it pOSSIb|e to keep the

application state?



KUP: Kernel upaate with application
checkpoint-and-restore (C/R)
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KUP: Kernel update with application
checkpoint-and-restore (C/R)

[KUP s life cycle]
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KUP: Kernel update with application
checkpoint-and-restore (C/R)

[KUP s life cycle]

|I—1 0 minutes of downtirk

Challenge: how to further decrease

the potential downtime?



Techniques to decrease the
downtime

1) Incremental checkpoint
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Incremental checkpoint

* Reduces downtime (up to 83.5%)

* Problem: Multiple snapshots increase the restore time

Naive
checkpoint S, S, = Snapshot instance

<..downtime
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Incremental checkpoint

* Reduces downtime (up to 83.5%)

* Problem: Multiple snapshots increase the restore time

Naive
checkpoint S, S, = Snapshot instance

downtime

‘. ............................................... >
Timeline - rd S

Incremental
checkpoint S, 5, S5 S,

downtime




On-demand restore

* Rebind the memory once the application
accesses it

- Only map the memory region with snapshot
and restart the application

* Decreases the downtime (up to 99.6%)

* Problem: Incompatible with incremental
checkpoint



Problem: both techniques together
result in inefficient application C/R

* During restore, need to map each pages individually
- Individual lookups to find the relevant pages

- Individual page mapping to enable on-demand restore

* An application has 4 pages as
its working set size S,

* Incremental checkpoint has 2
iterations

- Jstiteration = all 4 pages (1, 2, 3, 4) are dumped

- 2ndjteration = 2 pages (2, 4) are dirtied

* [Nncreases the restoration downtime (42.5%)



Problem: both techniques together
result in inefficient application C/R

* During restore, need to map each pages individually
- Individual lookups to find the relevant pages

- Individual page mapping to enable on-demand restore

* An application has 4 pages as AN
its working set size S, < 5,

* Incremental checkpoint has 2 13 24
iterations

- Jstiteration = all 4 pages (1, 2, 3, 4) are dumped
- 2ndjteration = 2 pages (2, 4) are dirtied

* [Nncreases the restoration downtime (42.5%)



New abstraction: file-offset baseo
address mapping (FOAM)

 Flat address space representation for the snapshot

- One-to-one mapping between the address space and the
snapshot

- No explicit lookups for the pages across the snapshots

- Afew map operations to map the entire snapshot with address
space

* Use sparse file representation
- Rely on the concept of holes supported by modern file systems

* Simplifies incremental checkpoint and on-demand restore



Techniques to decrease the
downtime

SN
In-kernel
switch
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Redundant data copy
* Application C/R copies data back and forth

* Not a good fit for applications with huge memory
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Redundant data copy
* Application C/R copies data back and forth

s it possible to avoid memory copy?




Avoid redundant data copy across

repoot
* Reserve the application's memory across reboot

* Inherently rebind the memory without any copy
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Avoid redundant data copy across

repoot
* Reserve the application's memory across reboot

* Inherently rebind the memory without any copy
Challenge: how to notify the newer

Snapshot




Persist physical pages (PPP) without
OS modification

* Reserve virtual-to-physical mapping information

- Static instrumentation of the OS binary

- Inject our own memory reservation function, then
further boot the OS

* Handle page-faults for the restored application
- Dynamic kernel instrumentation

- Inject our own page fault handler function for
memory binding



Persist physical pages (PPP) without
OS modification

* Reserve virtual-to-physical mapping information

ol 1 ¢ 1 1 1 r .1 rNr— 1

* No explicit memory copy

* Does not require any kernel source modification

| —

- Dynamic kernel instrumentation

- Inject our own page fault handler function for
memory binding



Implementation

* Application C/R = criu
- Works at the namespace level
* In-kernel switch = kexec system call

- A mini boot loader that bypasses BIOS while booting

Component Lines of code

criu/ on-demand restore 810 lines of C

criu/ FOAM 950 lines of C

criu/ PPP 600 lines of C

KUP systemd, init 1040 lines of Python/Bash
criu/ others, kexec(), etc. 150 lines of C

Total 3,550 lines of code



Fvaluation

* How effective is KUP's approach compared to
the in-kernel hot patching?

* What is the effective performance of each
technique during the update?



KUP can support major and minor

-’

Upaates in Ubuntu
* KUP supports 23 minor/4 major updates (v3.17-v4.1)

* However, kpatch can only update 2 versions

- e.g., layout change in data structure

kpatch failure scenarios

# errors

50 - = I 0 b =
40 - . S
30 - I i ' 10 o
20 - = |- SR
10 - TN 5 S E S = o Lema
.‘ o e S - . . . g ]
G — - N _ = N
. v _ . . _ . . .
U | . rs N ¥ K < ..
A /i LGN D M NSRS IS 08 M NE M-I DE N>
SRR A A G A -
' ons® ) ws®
3.13.0-x 3.16.0-x 3.19.0-x
,,
May 2014 June 2015

build/diff errors O #layout errors B #static local errors



Updating OS with memcached

* PPP has the least degradation

» Storage also affects the performance
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Bandwidth (MB)

On-demand restore - SSD ||
150
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Limitations

* KUP does not support checkpoint ana
restore all socket implementations

- TCP, UDP and netlink are supported

* Failure during restoration

- System call is removal or interface
modification



Demo



sSummary

* KUP: a simple update mechanism with
application checkpoint-and-restore (C/R)

* Employs various technigues:

- New data abstraction for application C/R
- Fast in-kernel switching technique

- A simple mechanism to persist the memory



sSummary

* KUP: a simple update mechanism with
application checkpoint-and-restore (C/R)

* Employs various technigues:

- New data abstraction for application C/R
- Fast in-kernel switching technique

- A simple mechanism to persist the memory

Thank you!



Backup Slides



Handling in-kernel states

* Handles namespace and cgroups

* ptrace() syscall to handle the blocking system calls,
timers, registers etc.

* Parasite code to fetch / put the application's states

* /proc file system exposes the required information
for application C/R

* Anew mode (TCP_REPAIR) allows handling the TCP
connections



What cannot be checkpointeo

* X171 applications
* Tasks with debugger attachea

* Tasks running in compat mode (32 bit)



Possible changes after
application C/R

* Per-task statistics

* Namespace IDs

* Process start time

* Mount point IDs

e Socket IDs (st ino)

* VDSO



Suitable applications

* Suitable for all kinds of applications
* PPP approach supports all types of applications

- May fail to restore on the previous kernel

* FOAM is not a good candidate for write-
intensive applications

- More confidence in safely restoring the
application on the previous kernel



PPP works effectively
* FOAM on SSD - slow
* FOAM on RP-RAMFES = space inefficient
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PPP works effectively

* FOAM on SSD - slow
* FOAM on RP-RAMFES = space inefficient
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