
Unsafe	Time	Handling	In	
Smartphones

Abhilash	Jindal Prahlad Joshi
Y.	Charlie	Hu Samuel	Midkiff

1

Increasing	
hardware/software

functionality

Limited	form	factor	
and	weight

2

Smartphones	are	Battery	Constrained

Paradigm	Shift	in	Power	Management:	
Aggressive	Sleeping	Policy

• Desktop/Server:	CPU	Default	ON
• CPU	turned	off	when	idle	for	long time

• Smartphones:	CPU	Default	OFF
• Smartphone	OSes aggressively	turn	off	Screen/CPU	after	brief user	inactivity
• Helps	increasing	standby	time	period

3

Time	Induced	Critical	Sections

4

public double do_memcpy (memcpy_t fn, size_t len, ..) {
…

t1 = getTime ();

fn (dst, src, len);

t2 = getTime ();

t_diff = (t2 – t1);

return len / t_diff;
}

From tools/perf/bench/mem-memcpy.c

Time

t2t1

0:00

0:03

3

6000/3	=	2000	MBps

6000	MB

Sleep	Induced	Time	Bugs

5

public double do_memcpy (memcpy_t fn, size_t len, ..) {
…

t1 = getTime ();

fn (dst, src, len);

t2 = getTime ();

t_diff = (t2 – t1);

return len / t_diff;
}

From tools/perf/bench/mem-memcpy.c

Time

t2t1

0:00

5:00

300

6000/300	=	20	MBps

6000	MB

Sleep	Induced	Time	Bugs	(2)

6

• SITB	happens	when	the	smartphone	CPU/SOC	is	suspended	in	the	
middle	of	a	time	manipulation

• Alters	intended	program	behavior
• Hard	to	reproduce

• Will	only	happen	when	CPU	sleeps	when	the	code	execution	is	between	time	
manipulation

“I	think	it	will	fix	an	odd	issue	I	have	seen	in	a	log	file	(apparently	was	
completely	off	track	debugging	 it).	As	this	very	likely	is	a	real	world	
issue,	I’d	recommend	applying	the	patch	to	the	fixes	branch“

– Android	kernel	developer

Power	Control	API-- Wakelocks

7

Foo(…){

time	manipulation

}

wake_lock (…)

wake_unlock (…)

• CPU	is	suspended	only	after	last	wakelock	is	released

Outline

• Sleep	Induced	Time	Bugs
• Categorizing	Time	Usages	and	Vulnerabilities	to	SITB

• Case	1	:	Timed	Callback
• Case	2	:	Time	Setting
• Case	3	:	Time	arithmetic
• Case	4	:	Logging

• Klock Design	
• Evaluation

8

Time	Usage	In	Android

• Collected	list	of	time	related	APIs	exposed	at	each	software	layer	and	
grepped them

• Usages	belong	to	four	categories
• Timed	Callback,	Time	setting,	Time	arithmetic,	Logging

9

Kernel Android
Framework

978	Apps

Time	usages 1072 1737 7798

• Code	wishes	to	perform	a	certain	task	at	a	future	time
• Register	alarm	with	system	specifying	a	callback	function	and	a	time	interval

• Vulnerability:	CPU	suspension	before	timer	callback	finishes	alters	
intended	semantics

void	msm_serial_clock_request_off(..,	 int timeout){
clk_off_timer.function =	msm_serial_clock_off;	
hrtimer_start (clk_off_timer,	 timeout);	

}

msm_serial_clock_off (struct hrtimer timer){
clk_disable(msm_port->clk);	

}

drivers/serial/msm serial.c

Case	1:	Timed	Callback

10

Case	2:	Time	setting

• Code	updates	current	system	time

11

void	setTimeFromNITZString(..)	{
nitz =	getTime ();
/*	some	processing	*/
c	=	f	(nitz);
setAndBroadcastNetworkSetTime (c);	

}

From	com/android/internal/telephony/gsm/GsmServiceStateTracker.java

Time

cnitz

Case	2:	Time	setting	vulnerability

• Code	updates	current	system	time

12

void	setTimeFromNITZString(..)	{
nitz =	getTime ();
/*	some	processing	*/
c	=	f	(nitz);
setAndBroadcastNetworkSetTime (c);	

}

From	com/android/internal/telephony/gsm/GsmServiceStateTracker.java

Time

cnitz

CPU	sleeps	before	setTime would	set	stale	time

Case	3:	Time	arithmetic

• Code	collects	two	timestamps	and	performs	arithmetic	on	them

13

public double do_memcpy (memcpy_t fn, size_t len, ..) {
…

t1 = getTime ();

fn (dst, src, len);

t2 = getTime ();

t_diff = (t2 – t1);

return len / t_diff;
}

From tools/perf/bench/mem-memcpy.c

Time

t2t1

0:00

0:03

3

6000/3	=	2000	MBps

6000	MB

Case	3:	Time	arithmetic	vulnerability

14

public double do_memcpy (memcpy_t fn, size_t len, ..) {
…

t1 = getTime ();

fn (dst, src, len);

t2 = getTime ();

t_diff = (t2 – t1);

return len / t_diff;
}

From tools/perf/bench/mem-memcpy.c

Time

t2t1

0:00

5:00

300

6000/300	=	20	MBps

6000	MB

CPU	sleeps	between	obtaining	two	timestamps

Case	3:	Time	arithmetic	vulnerability	(2)

15

public double do_memcpy (memcpy_t fn, size_t len, ..) {
…

t1 = getTime ();

fn (dst, src, len);

t2 = getTime ();

t_diff = (t2 – t1);

return len / t_diff;
}

From tools/perf/bench/mem-memcpy.c

Time

t2t1

1:00

0:00

-60

6000/-60	=	-100	MBps

6000	MB
Set	time

Time	is	set	between	obtaining	two	timestamps

Case	4:	Time	logging

• Code	obtains	current	time	and	logs	it	in	conjunction	with	some	event
• Usually	for	postmortem	debugging

• Vulnerability:	CPU	suspension	in	between	event	and	its	timestamping
will	result	in	an	incorrect	timestamp	being	logged	for	the	event.	

16

Overview

• Sleep	Induced	Time	Bugs
• Categorizing	Time	Usages	and	Vulnerabilities	to	SITB
• Klock Design	

• Primer	on	Reaching	definition,	UD	and	DU	chains
• Identifying	Protected	Statements
• Identifying	Time	Critical	Sections
• Implementation

• Evaluation
• Conclusion

17

Reaching	Definition	DataFlow problem

18

y	=	3;
x	=	10;
y	=	11;

if(y	>	5)	{
x	=	1;
y	=	2;

}	else	{
z	=	x;
x	=	4;

}

: {}

: {d1,	d2}
: {d1,	d2}: {d1,	d2}

: {d3,	d4} : {d2,	d5,	d6}

: {d2,	d3,	d4,	d5,	d6}
exit

entry

d0:		y	=	3
d1:		x	=	10
d2:		y	=	11	
if	(y>5)

B0

d3:		x	=	1
d4:		y	=	2	

d5:		z	=	x
d6:		x	=	4	

B1 B2

IN[B0]

OUT[B0]

OUT[B2]

IN[B2]IN[B1]

IN[exit]

OUT[B1]

OUT[entry]	=	{}

i =	1
sum	 =	0
product	=	1

While	(i <	n)	{
sum	= i +	sum;
product	*=	i
…
i =	i +	1;

}

Print	(sum);
Print (product);

Use-Def (UD)	Chains

19

Links	each	use	of	variable	x	to	DEF	which	
reach	that	use

Closure:	Recursively	following	UD	chains	show	
all	DEFs	that	impact	1	variable	use

i =	1
sum	 =	0
product	=	1

While	(i <	n)	{
sum	= i +	sum;
product	*=	i
…
i =	i +	1;

}

Print	(sum);
Print (product);

Def-Use	(DU)	Chains

20

Links	each	definition	of	variable	x	to	those	
USE	which	that	definition	can	reach.

Closure:	Recursively	following	DU	chains	
show	all	USEs	impacted	by	1	definition

Klock Overview

21

Program	
source	code

Compare	and	report	
BUGS	=	TICS	- SAFE

Identifying	Protected	Statements

Reaching	
Definition	
Analysis

Protection	
mechanisms

Identifying	Time	Critical	Sections	(TICS)

Case	1
Timer	

registration	
APIs

Case	2:	
UD	chains setTimeAPIs

Case	3:
DU	chains getTime APIs

Standard	Compiler	
Transformations

• Alias	analysis
• CFG	construction

TICS

SAFE

wakelock.acquire ();		//Don’t	let	CPU	sleep	
…
If	(a	condition)

…
wakelock.release ();
…
wakelock.acquire ();

}
…
wakelock.release (); //CPU	is	now	free	to	sleep

RDA	to	Identify	Protected	Statements

22
exit

Entry					

wakelock.acquire();
If(a	condition)

…
Wakelock.realease()

…
Wakelock.release();

…
Wakelock.acquire();

exit

Entry					

d0: wakelock	=	1
If(a	condition)

…
d3: wakelock =	0

…
d1:	Wakelock	=	0

…
d2:	Wakelock	=	1

: {}

: {d0}

: {d1}

: {d0,	d2}

: {d3}

Klock Overview

23

Program	
source	code

Identifying	Protected	Statements

Reaching	
Definition	
Analysis

Protection	
mechanisms

Identifying	Time	Critical	Sections	(TICS)

Case	1
Timer	

registration	
APIs

Case	2:	
UD	chains setTimeAPIs

Case	3:
DU	chains getTime APIs

Standard	Compiler	
Transformations

• Alias	analysis
• CFG	construction

Compare	and	report	
BUGS	=	TICS	- SAFE

TICS

SAFE

Identifying	Time	Critical	Section
Case	1:	Timer	Callback

24

void	msm_serial_clock_request_off(..,	 int timeout){
clk_off_timer.function =	msm_serial_clock_off;	

hrtimer_start (clk_off_timer,	 timeout);	
}

msm_serial_clock_off (struct hrtimer timer){
clk_disable(msm_port->clk);	

}
TICS

For	every	timer	registration	site
• Find	callback	function	target
• Conservatively	add	callback	function	to	TICS

void	setTimeFromNITZString(..)	{
nitz =	getTime ();
/*	some	processing	*/
c	=	f	(nitz);
setAndBroadcastNetworkSetTime (c);	

}

From	com/android/internal/telephony/gsm/GsmServiceStateTracker.java

Identifying	Time	Critical	Section
Case	2:	Time	Setting

25

TICS

For	all	statements,	where	time	is	set
• Recursively	find	DEFS	using	UD	chains
• Add	all	paths	from	DEFS	to	set	time	
into	TICS

Identifying	Time	Critical	Section
Case	3:	Time	Arithmetic

26

public double do_memcpy (memcpy_t fn, size_t len, ..) {
…

t1 = getTime ();

fn (dst, src, len);

t2 = getTime ();

t_diff = (t2 – t1);

return len / t_diff;
}

For	all	definitions	that	get	time
• Find	closure	of	USES	using	DU	chains

If	a	statement	has	variables	from	two	
different	closures	(t1,	t2)
• Must	be	arithmetic	between	t1,	t2
• Add	all	statements	between	getting	

t1	and	getting	t2	to	TICS

TICS

Implementation

• Built	on	LLVM	compiler	infrastructure
• 1	custom	pass	to	build	call	graph
• 4	custom	passes	for	identifying	protected	statements	and	identifying	TICS	
(case	1,2,	3)

• ~5	KLOC

• Available	at	http://github.com/klock-android	

27

Overview

• Sleep	Induced	Time	Bugs
• Categorizing	Time	Usages	and	Vulnerabilities	to	SITB
• Klock Design	
• Evaluation

28

Evaluation

• Ran	Klock on	5	different	kernel	versions
• Nexus	1,	Nexus	7,	Nexus	10,	Nexus	S	and	x86	(with	wakelocks	enabled)

• Found	63	bugs
• 4	timed	callback	bugs,	0	time	setting	bugs,	59	time	arithmetic	bugs
• 14	have	been	fixed,	7	files	have	been	removed	in	newer	kernel	versions
• Out	of	42	remaining,	7	developers	replied	so	far	confirming	the	bugs

29

Bugs	(63)	breakdown

30

• Correctness	related	bugs	(18)
• 6	drivers	incorrectly	measure	pulse	width	hence	reading	wrong	received	data
• 5	radio	drivers	incorrectly	measure	clock	rate	necessary	to	decode	the	
incoming	data

• 7	other	miscellaneous	bugs

• Performance	related	bugs	(15)
• 8	drivers	spin	for	an	extended	period	of	time	leaving	device	unusable
• 4	code	locations	call	sleep	for	a	long	time
• 3	drivers	keep	their	devices	on	longer	than	necessary	wasting	energy

• Benchmark	bugs	(30)

False	Positives

• 106	False	positives

• Suspension	does	not	affect	program	semantics
• driver	generates	a	random	number	using	timer	arithmetic

• System	calls
• System	calls	(eg sys_settime)	are	just	wrappers	of	actual	time	setting	APIs	and	
do	not	have	suspension	prevention	mechanism

31

Conclusion

• Sleep	Induced	Time	Bugs
• Time	manipulation	form	Time	Critical	Sections
• CPU	suspension	during	Time	Critical	Sections	lead	to	the	bugs

• Time	is	widely	manipulated	in	Android	Ecosystem
• Timed	callback,	Time	setting,	Time	arithmetic	and	Logging

• Klock
• Static	checker	built	using	reaching	definition	analysis,	UD/DU	chains
• Found	63	bugs	in	the	kernel
• http://github.com/klock-android	

32

