
An Evolutionary Study of Linux

Memory Management for Fun and Profit

Jian Huang

Moinuddin K. Qureshi Karsten Schwan

Virtual Memory: A Long History

2

DRAM Disk

Physical Hardware

Virtual Memory: A Long History

Virtual Memory

(per process)

2

DRAM Disk

Physical Hardware

Virtual Memory: A Long History

Virtual Memory

(per process)

2

DRAM Disk

Physical Hardware

Virtual Memory: A Long History

Virtual Memory

(per process)

2

DRAM Disk

Physical Hardware

DevelopmentOS Core Component

+

Virtual Memory: A Long History

Virtual Memory

(per process)

2

DRAM Disk

Physical Hardware

Pervasively UsedDevelopmentOS Core Component

+

Why Memory Manager Study Matters?

3

Features & Functions

Why Memory Manager Study Matters?

3

Features & Functions Hardware Support

Why Memory Manager Study Matters?

3

Features & Functions Hardware Support System Reliability

Why Memory Manager Study Matters?

3

Features & Functions Hardware Support System Reliability

Study on Memory Manager

Why Memory Manager Study Matters?

3

Features & Functions Hardware Support System Reliability

Study on Memory Manager Building Better Memory Manager

On the Study of Memory Management

4

Understanding the Linux Virtual Memory Manager
[Mel Gorman, July 9, 2007]

On the Study of Memory Management

4

Understanding the Linux Virtual Memory Manager
[Mel Gorman, July 9, 2007]

Approach: Source code analysis, Linux 2.4, 2.6

Milestone

On the Study of Memory Management

4

Understanding the Linux Virtual Memory Manager
[Mel Gorman, July 9, 2007]

Approach: Source code analysis, Linux 2.4, 2.6

Milestone

On the Study of Memory Management

4

Understanding the Linux Virtual Memory Manager
[Mel Gorman, July 9, 2007]

Approach: Source code analysis, Linux 2.4, 2.6

Our Focus: Patch study, Linux 2.6 – 4.0

Milestone

On the Study of Memory Management

4

Understanding the Linux Virtual Memory Manager
[Mel Gorman, July 9, 2007]

Approach: Source code analysis, Linux 2.4, 2.6

Our Focus: Patch study, Linux 2.6 – 4.0

Pattern Memory Bug

+
Optimization

+
Semantic

+

Preview of Our Findings

5

• Code changes are highly concentrated around the key functions

• 80% of patches  25% of its source code

•

Preview of Our Findings

5

• Code changes are highly concentrated around the key functions

• 80% of patches  25% of its source code

•

• Memory error – Checking – Concurrency – Logic – Programming

• Memory errors: Null pointer & page alignment

• Complex page states  Checking & logic bugs

•

Preview of Our Findings

5

• Code changes are highly concentrated around the key functions

• 80% of patches  25% of its source code

•

• Memory error – Checking – Concurrency – Logic – Programming

• Memory errors: Null pointer & page alignment

• Complex page states  Checking & logic bugs

•

• Data structures -- Policy trade-off -- Fast path

• 4 data structures, 5 design trade-offs, 8 types of fast paths

•

Preview of Our Findings

5

• Code changes are highly concentrated around the key functions

• 80% of patches  25% of its source code

•

• Memory error – Checking – Concurrency – Logic – Programming

• Memory errors: Null pointer & page alignment

• Complex page states  Checking & logic bugs

•

• Data structures -- Policy trade-off -- Fast path

• 4 data structures, 5 design trade-offs, 8 types of fast paths

•

• 35 key functionalities in 13 hot files

• The well-developed memory allocators still have many checking & lock bugs

•

Methodology Used in Our Study

6

Memory Allocation

Virtual Memory Management

Resource Controller Garbage Collection

Swapping

Page Cache & Write-back

Exception Handling Misc (e.g., data structure)

8 components

Methodology Used in Our Study

6

Memory Allocation

Virtual Memory Management

Resource Controller Garbage Collection

Swapping

Page Cache & Write-back

Exception Handling Misc (e.g., data structure)

8 components

4587 patches in 5 years

Methodology Used in Our Study

6

Patches

Description Follow-up

Discussions
Source Code

Analysis

Methodology Used in Our Study

6

Patches

Description Follow-up

Discussions
Source Code

Analysis

BugID

Commit Time

Component Type Causes

Involved Functions
……

MPatch

Labeling & MChecker

How Is the Memory Manager Changed?

7

0

10

20

30

40

50

60

70

80

2.6.32 (2009) 2.6.33 (2010) 2.6.38 (2011) 3.2 (2012) 3.10 (2013) 3.14 (2014) 4.0-rc4 (2015)

Li
ne

s
of

 C
od

e
(x

10
00

)

Linux version (released year)

How Is the Memory Manager Changed?

7

0

10

20

30

40

50

60

70

80

2.6.32 (2009) 2.6.33 (2010) 2.6.38 (2011) 3.2 (2012) 3.10 (2013) 3.14 (2014) 4.0-rc4 (2015)

Li
ne

s
of

 C
od

e
(x

10
00

)

Linux version (released year)

The LoC has increased by 60% since Linux 2.6.32.

Where Is the Memory Manager Changing?

8

Where Is the Memory Manager Changing?

8

Memory Manager Components

Where Is the Memory Manager Changing?

8

Linux Version

Where Is the Memory Manager Changing?

8

Number of Committed Patches

Where Is the Memory Manager Changing?

8

Where Is the Memory Manager Changing?

8

80% of the code changes  25% of the source code

Where Is the Memory Manager Changing?

8

Where Is the Memory Manager Changing?

8

Where Is the Memory Manager Changing?

8

Where Is the Memory Manager Changing?

8

Where Is the Memory Manager Changing?

8

13 hot files from 90 files  recent development focus

0

10

20

30

40

50

60

2.6.33 (2010) 2.6.38 (2011) 3.2 (2012) 3.10 (2013) 3.14 (2014) 4.0-rc4 (2015)

P
er

ce
nt

ag
e

(%
)

Linux version (released year)

Bug Code Maintenance Optimization New Feature

Why Is the Memory Manager Changed?

9

0

10

20

30

40

50

60

2.6.33 (2010) 2.6.38 (2011) 3.2 (2012) 3.10 (2013) 3.14 (2014) 4.0-rc4 (2015)

P
er

ce
nt

ag
e

(%
)

Linux version (released year)

Code Maintenance New Feature

Why Is the Memory Manager Changed?

9

0

10

20

30

40

50

60

2.6.33 (2010) 2.6.38 (2011) 3.2 (2012) 3.10 (2013) 3.14 (2014) 4.0-rc4 (2015)

P
er

ce
nt

ag
e

(%
)

Linux version (released year)

Bug Optimization

Why Is the Memory Manager Changed?

9

70% more bugs in well-developed memory manager!

On the Bugs in Memory Manager

10

On the Bugs in Memory Manager

10

Types of Memory Bugs

On the Bugs in Memory Manager

10

Memory Manager Component

On the Bugs in Memory Manager

10

Memory Allocation: 26%, Virtual Memory Management: 22%, GC: 14%

On the Bugs in Memory Manager

10

On the Bugs in Memory Manager

10

• Page alignment

• Null pointer

On the Bugs in Memory Manager

10

• Page alignment

• Null pointer

• Inappropriate check

• Missing check

• Wrong check

On the Bugs in Memory Manager

10

• Page alignment

• Null pointer

• Inappropriate check

• Missing check

• Wrong check

• Lock contention

• Missing lock

On the Bugs in Memory Manager

10

• Page alignment

• Null pointer

• Inappropriate check

• Missing check

• Wrong check

• Lock contention

• Missing lock

• Fault handler

• State update

• Case-by-case

On the Bugs in Memory Manager

10

• Page alignment

• Null pointer

• Inappropriate check

• Missing check

• Wrong check

• Lock contention

• Missing lock

• Fault handler

• State update

• Case-by-case

• API

• Misc

Memory Bugs: Case Studies

11

Page Alignment

mm/nommu.c

@@ -1762,6 +1765,8 @@ unsigned long do_mremap(unsigned long addr,

struct vm_area_struct *vma;

/* insanity checks first */

if (old_len == 0 || new_len == 0)

return (unsigned long) -EINVAL;

Memory Bugs: Case Studies

11

Page Alignment

mm/nommu.c

@@ -1762,6 +1765,8 @@ unsigned long do_mremap(unsigned long addr,

struct vm_area_struct *vma;

/* insanity checks first */

if (old_len == 0 || new_len == 0)

return (unsigned long) -EINVAL;

Bug: device drivers’ mmap() failed.

Cause: NOMMU does not do page_align(), which is inconsistent with MMU arch.

Memory Bugs: Case Studies

11

Page Alignment

mm/nommu.c

@@ -1762,6 +1765,8 @@ unsigned long do_mremap(unsigned long addr,

struct vm_area_struct *vma;

/* insanity checks first */

+ old_len = PAGE_ALIGN(old_len);

+ new_len = PAGE_ALIGN(new_len);
if (old_len == 0 || new_len == 0)

return (unsigned long) -EINVAL;

Bug: device drivers’ mmap() failed.

Cause: NOMMU does not do page_align(), which is inconsistent with MMU arch.

Memory Bugs: Case Studies

12

Checking

mm/bootmem.c

@@ -156,21 +157,31 @@ static void __init

free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,

Memory Bugs: Case Studies

12

Checking

mm/bootmem.c

@@ -156,21 +157,31 @@ static void __init

free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,

Bug: free pages wrongly.

Cause: miss boundary checking.

Memory Bugs: Case Studies

12

Checking

mm/bootmem.c

@@ -156,21 +157,31 @@ static void __init

free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,

+ BUG_ON(!size);

+

+ /* out range */

+ if (addr + size < bdata->node_boot_start ||

+ PFN_DOWN(addr) > bdata->node_low_pfn)

+ return;

Bug: free pages wrongly.

Cause: miss boundary checking.

Memory Optimizations

13

Radix Tree Red-black Tree Bitmap List

Data Structures

4

Memory Optimizations

13

Radix Tree Red-black Tree Bitmap List

Data Structures

Decentralize data structures: per-core/per-node/per-device approaches.

4

Memory Optimizations

13

Radix Tree Red-black Tree Bitmap List

Data Structures

4

5
Policy Trade-offs

Latency Vs. Throughput Synchronous Vs. Asynchronous

Lazy Vs. Non-lazy Local Vs. Global Fairness Vs. Performance

Memory Optimizations

13

Radix Tree Red-black Tree Bitmap List

Data Structures

4

5
Policy Trade-offs

Latency Vs. Throughput Synchronous Vs. Asynchronous

Lazy Vs. Non-lazy Local Vs. Global Fairness Vs. Performance

8
Fast Paths

Code Reduction Lockless Optimization Inline

Code Shifting

New Function

State Caching Group Execution Optimistic Barrier

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global

137 patches committed especially for reducing

the latencies of memory operations.

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global

Lazy policy: delay expensive operations.

May change the execution order of functions.

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global

Lazy policy: delay expensive operations.

May change the execution order of functions.

vmalloc Lazy TLB flush, lazy unmapping

mempolicy Lazy page migration between nodes

huge_memory Lazy huge zero page allocation

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global

Mostly considered in

memory allocation & GC

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global

Async is popular,

but be careful to its fault handlers!

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global

Async is popular,

but be careful to its fault handlers!

E.g., early termination

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global
Decentralizing global structures

for better scalability

Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous

Local Vs. Global
Decentralizing global structures

for better scalability

E.g., dynamic per-cpu allocator.

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Simplify the slow path logic

mm/memory.c

@@ -303,8 +303,10 @@ static void __munlock_pagevec(

if (PageLRU(page)) {

lruvec = mem_cgroup_page_lruvec(page, zone);

lru = page_lru(page);

-

- get_page(page);

+ /*

+ * We already have pin from follow_page_mask()

+ * so we can spare the get_page() here.

+ */

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Simplify the slow path logic

E.g., Avoid redundant get/put_page in munlock_vma_range as

pages will not be referred anymore.

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Reduce the usage of lock and atomic operations

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Reduce the usage of lock and atomic operations

E.g., lockless memory allocator in SLUB

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Cache states to avoid expensive operations

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Cache states to avoid expensive operations

E.g., pre-calculate the number of online nodes vs. always

calling expensive num_online_nodes

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Move infrequently executed code from

fast path to slow path

Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function

Lockless Optimization

State Caching

Inline
Code Shifting

Group Execution
Optimistic Barrier

Move infrequently executed code from

fast path to slow path

E.g., in SLUB allocator, slow path executes the interrupt

enable/disable handlers, fast path executes them only at fallback

Memory Semantics

16

Memory Resource Controller

memory cgroup

charge/uncharge

cgroup management

memcontrol.c

Memory Semantics

16

Memory Resource Controller

memory cgroup

charge/uncharge

cgroup management

memcontrol.c

Bug: Concurrency issues

Memory Semantics

16

Memory Resource Controller

memory cgroup

charge/uncharge

cgroup management

memcontrol.c

Bug: Concurrency issues

Cause: missing locks in charging & uncharging pages
(truncation, reclaim, swapout and migration)

Memory Semantics

17

Virtual Memory Management

memory policy

Memory Semantics

17

Virtual Memory Management

memory policy

policy definition

policy enforcement

mempolicy.c

Memory Semantics

17

Virtual Memory Management

memory policy

policy definition

policy enforcement

mempolicy.c

Bug: policy enforcement failure

Memory Semantics

17

Virtual Memory Management

memory policy

policy definition

policy enforcement

mempolicy.c

Bug: policy enforcement failure

Cause: missing check on page states & statistics,

e.g., whether a page is dirty, cache hit/miss rate

Conclusion

18

Pattern Memory Bug

+
Optimization

+
Semantic

+

Conclusion

18

Pattern Memory Bug

+
Optimization

+
Semantic

+

• Complex page states  Concurrency bugs  Simplified page management

• Fast path  Introduce new errors  Fast path verification

• Bugs in checking  Model checking for memory manager

•

19

Jian Huang

jian.huang@gatech.edu

Moinuddin K. Qureshi Karsten Schwan

Thanks!

Q&A

mailto:jian.huang@gatech.edu

