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Study on Memory Manager Building Better Memory Manager 
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On the Study of Memory Management

4

Understanding the Linux Virtual Memory Manager
[Mel Gorman, July 9, 2007]

Approach: Source code analysis, Linux 2.4, 2.6

Our Focus: Patch study, Linux 2.6 – 4.0

Pattern Memory Bug

+
Optimization

+
Semantic

+
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• Code changes are highly concentrated around the key functions

• 80% of patches  25% of its source code

• ......

• Memory error – Checking – Concurrency – Logic – Programming

• Memory errors: Null pointer & page alignment

• Complex page states  Checking & logic bugs

• ......

• Data structures -- Policy trade-off -- Fast path

• 4 data structures, 5 design trade-offs, 8 types of fast paths

• ......

• 35 key functionalities in 13 hot files

• The well-developed memory allocators still have many checking & lock bugs

• ......
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Memory Allocation

Virtual Memory Management

Resource Controller Garbage Collection

Swapping

Page Cache & Write-back

Exception Handling Misc (e.g., data structure)

8 components

4587 patches in 5 years
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Patches

Description   Follow-up 

Discussions   
Source Code

Analysis   

BugID   

Commit Time   

Component  Type Causes   

Involved Functions
……   

MPatch

Labeling & MChecker
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The LoC has increased by 60% since Linux 2.6.32.
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13 hot files from 90 files  recent development focus



0

10

20

30

40

50

60

2.6.33 (2010) 2.6.38 (2011) 3.2 (2012) 3.10 (2013) 3.14 (2014) 4.0-rc4 (2015)

P
er

ce
nt

ag
e 

(%
)

Linux version (released year)

Bug Code Maintenance Optimization New Feature

Why Is the Memory Manager Changed?

9



0

10

20

30

40

50

60

2.6.33 (2010) 2.6.38 (2011) 3.2 (2012) 3.10 (2013) 3.14 (2014) 4.0-rc4 (2015)

P
er

ce
nt

ag
e 

(%
)

Linux version (released year)

Code Maintenance New Feature

Why Is the Memory Manager Changed?

9



0

10

20

30

40

50

60

2.6.33 (2010) 2.6.38 (2011) 3.2 (2012) 3.10 (2013) 3.14 (2014) 4.0-rc4 (2015)

P
er

ce
nt

ag
e 

(%
)

Linux version (released year)

Bug Optimization

Why Is the Memory Manager Changed?

9

70% more bugs in well-developed memory manager!
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Memory Allocation: 26%, Virtual Memory Management: 22%, GC: 14%
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• Page alignment

• Null pointer

• Inappropriate check

• Missing check

• Wrong check

• Lock contention

• Missing lock

• Fault handler

• State update

• Case-by-case

• API

• Misc
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Page Alignment

mm/nommu.c

@@ -1762,6 +1765,8 @@ unsigned long do_mremap(unsigned long addr,

struct vm_area_struct *vma;

/* insanity checks first */

+ old_len = PAGE_ALIGN(old_len);

+ new_len = PAGE_ALIGN(new_len);
if (old_len == 0 || new_len == 0)

return (unsigned long) -EINVAL;

Bug: device drivers’ mmap() failed.

Cause: NOMMU does not do page_align(), which is inconsistent with MMU arch.
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Checking

mm/bootmem.c

@@ -156,21 +157,31 @@ static void __init

free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,

+ BUG_ON(!size);

+

+ /* out range */

+ if (addr + size < bdata->node_boot_start ||

+ PFN_DOWN(addr) > bdata->node_low_pfn)

+ return;

Bug: free pages wrongly.

Cause: miss boundary checking.
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5
Policy Trade-offs

Latency Vs. Throughput Synchronous Vs. Asynchronous

Lazy Vs. Non-lazy Local Vs. Global Fairness Vs. Performance

8
Fast Paths

Code Reduction Lockless Optimization Inline

Code Shifting

New Function

State Caching Group Execution Optimistic Barrier
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Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance 

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous 

Local Vs. Global 

Lazy policy: delay expensive operations.  

May change the execution order of functions.



Memory Optimizations: Policy Trade-offs

14

33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance 

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous 

Local Vs. Global 

Lazy policy: delay expensive operations.  

May change the execution order of functions.

vmalloc Lazy TLB flush, lazy unmapping

mempolicy Lazy page migration between nodes

huge_memory Lazy huge zero page allocation
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33%

22%

18%

16%

11%Latency Vs. Throughput

Fairness Vs. Performance 

Lazy Vs. Non-lazy

Synchronous Vs. Asynchronous 

Local Vs. Global 
Decentralizing global structures 

for better scalability

E.g., dynamic per-cpu allocator.



Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function 

Lockless Optimization

State Caching 

Inline 
Code Shifting 

Group Execution 
Optimistic Barrier 



Memory Optimizations: Fast Path

15

4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function 

Lockless Optimization

State Caching 

Inline 
Code Shifting 

Group Execution 
Optimistic Barrier 

Simplify the slow path logic



mm/memory.c

@@ -303,8 +303,10 @@ static void __munlock_pagevec(

if (PageLRU(page)) {

lruvec = mem_cgroup_page_lruvec(page, zone);

lru = page_lru(page);

-

- get_page(page);

+            /*

+ * We already have pin from follow_page_mask()

+ * so we can spare the get_page() here.

+ */
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Simplify the slow path logic

E.g., Avoid redundant get/put_page in munlock_vma_range as 

pages will not be referred anymore.
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calling expensive num_online_nodes
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4%
4%
5%

6%

8%

12%

27%

34%Code Reduction

New Function 

Lockless Optimization

State Caching 

Inline 
Code Shifting 

Group Execution 
Optimistic Barrier 

Move infrequently executed code from 

fast path to slow path

E.g., in SLUB allocator, slow path executes the interrupt 

enable/disable handlers, fast path executes them only at fallback 
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Memory Resource Controller

memory cgroup

charge/uncharge

cgroup management

memcontrol.c

Bug: Concurrency issues

Cause: missing locks in charging & uncharging pages
(truncation, reclaim, swapout and migration)
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Virtual Memory Management

memory policy

policy definition

policy enforcement

mempolicy.c

Bug: policy enforcement failure

Cause: missing check on page states & statistics,

e.g., whether a page is dirty, cache hit/miss rate
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Pattern Memory Bug

+
Optimization

+
Semantic

+

• Complex page states  Concurrency bugs  Simplified page management  

• Fast path  Introduce new errors  Fast path verification

• Bugs in checking  Model checking for memory manager

• ......
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