
Kinetic	Modeling	of	Data	
Eviction	in	Cache

Xiameng	Hu,	XiaolinWang,	Lan	Zhou,	Yingwei Luo
Peking	University

Chen	Ding
University	of	Rochester

ZhenlinWang
Michigan	Technological	University

6/29/16 Usenix ATC'16 1

Background
�Miss	Ratio	Curve	(MRC)	is	a	powerful	metric	for	
cache	optimization:
� Allocation,	Partition,	Scheduling,	QoS managing…

� Online	MRC	profiling	techniques	have	been	
developed	for	decades.

� Ultimate	goals:
� Less	space	consumption.
� Lower	time	complexity.	

6/29/16 Usenix ATC'16 2

0%

50%

100%
MRC

Background

6/29/16 Usenix ATC'16 3

•A	brief	history	of	MRC	techniques.

Our Model: Average Eviction Time

6/29/16 Usenix ATC'16 4

•Linear time
•Constant space
•Composability

Eviction	Time

6/29/16 Usenix ATC'16 5

d a b c

a d b c

c a d b

b c a d

e b c a

a d b c

2nd access

Eviction

d a b c

a b c e

1st access

a

d

a

d

a

c

b

e

data

Residence time

Eviction time

1

2

3

4

5

6

7

8

time

d e b cd93nd access

MRU LRU

Eviction	Time

�The	eviction	time	is	the	time	between	the	last	access	
and	the	eviction.
�Property of eviction time:

� If	the	reuse	time	of	an	access	is	larger	than	it’s	eviction	time,	
it’s	a	miss.	

� Reuse	time:	the	time	between	an	access	and	its	next	reuse.	
The	reuse	time	of	cold	miss	is	defined	as	infinite.

6/29/16 Usenix ATC'16 6

Back	to	the	example

6/29/16 Usenix ATC'16 7

d a b c

a d b c

c a d b

b c a d

e b c a

a d b c

d a b c

a b c ea

d

a

d

a

c

b

e

data

Eviction time = 4

d e b cd

Hit!

Cold
Miss!

Miss!

Reuse time = ∞

Reuse time = 2

Reuse time = 5

1

2

3

4

5

6

7

8

time

9

MRU LRU

Average	Eviction	Time

�Average	Eviction	Time	(AET)	is	the	mean	eviction	
time	of	all	data	evictions	in	a	fully	associative	LRU	
cache.
�We	can	assume	all	data	references	with	a	reuse	
time	larger	than	AET	are	misses.

6/29/16 Usenix ATC'16 8

How	to	model	AET?
� Move	condition	#1:	

� Cache	hit	inserts	the	lower priority position data	to	the	
LRU	stack top.

� Move	condition	#2:	
� Cache	miss	inserts	a	missed data	to	the	LRU	stack top.

6/29/16 Usenix ATC'16 9

d a b c

a d b c

d a b c

e d a b

access: a

access: e

MRU LRU

MRU LRU

How	to	model	AET?
� Stay	condition	:	

� Cache	hit	inserts	the	higher priority position data	to	
the	LRU	stack top.

6/29/16 Usenix ATC'16 10

a b d c

b a d c
access: b

MRU LRU

How	to	model	AET?
�We	define	the	arrival	time	𝑇% as	the	expected time	it	
takes	for	an evicting data to	reach	the	m-th position	
(from	its	last	access).

� A	data	block	at	position	𝑚move	one	step	down	
whenever	the	reuse	time	of	current	access	is	greater	
than	the	𝑇%.	

� 𝑃(𝑡) is	the	probability	for	an	access	with	a	reuse	time	
greater	than	𝑡	.

� The	movement	condition	is	now	a	probability.	Every	
access	,	a	data	block	at	stack	position	𝑚moves	by	
𝑃(𝑇%) .	

6/29/16 Usenix ATC'16 11

Kinetic	Model
� Data	travels	in	one	direction	with	changing	speed:

� In	general,	if	the	time	that	evicting	data	already	
traveled	is	𝑡, its’	current	evicting	speed	is	𝑃(𝑡).

6/29/16 Usenix ATC'16 12

top d bottom… …

𝑉(𝑡) 	= 	𝑃(𝑡)

Average	Eviction	Time
� Physics:	the	integration	of	speed	over	time	is	travel	distance.
� The	length	of	LRU list	is	the	travel	distance	of	every	eviction.	Which	
is	the	cache	size	𝑐.

1 𝑃 𝑡 𝑑𝑡 = 𝑐
345(6)

7

� With	𝑃,we	calculate	AETs	of	different	cache	sizes	in	linear	time.
� 𝑃 can	be	acquired	online	by	monitoring	the	reuse	time	histogram.

6/29/16 Usenix ATC'16 13

From	AET	to	MRC

6/29/16 Usenix ATC'16 14

•The	miss	ratio	𝑚𝑟(𝑐)	at	cache	size	c is	the	
probability	that	a	reuse	time	is	greater	than	the	
average	eviction	time	𝐴𝐸𝑇 𝑐 :

𝑚𝑟(𝑐) 	= 	𝑃(𝐴𝐸𝑇(𝑐))

AET Design Overview

6/29/16 Usenix	ATC'15 15

Program	
Monitoring

Access
Trace

Reuse Time
Histogram AET Miss Ratio

Curve

Random	Sampling

� Randomly	pick	current	accessed	data	to	monitor	its	reuse	
time.

� The	distance	between	two	sampled	is	a	random	value.	
� Constrain	the	random	value	range	to	control	sampling	rate.
� A	hash	table	is	required.	It	maintains	current	monitored	data.
� The	space	consumption	is	linear	but	limited.

6/29/16 Usenix ATC'16 16

Reservoir	Sampling	

� To	bound	the	space	cost	to	constant.		𝑂(1)
�When	the	𝑖-th sampled	data	arrives,	reservoir	sampling	
keeps	the	new	data	in	monitoring	set	with	probability	
min	(1, 𝑘/𝑖)	and	randomly	discards	an	old	data	when	the	set	
is	full.	

� It	ensures	the	equal	probability	for	every	sampled	reuse	to	
update	reuse	time	histogram.	

�While	the	number	of	samples	be	recorded	is	bounded.

6/29/16 Usenix ATC'16 17

AET	in	Shared	Cache
� Composability：co-run	behavior	can	be	computed	
from	the	metric	of	solo-runs.

�When	𝑛 programs	share	the	cache	of	size	𝑐,	all	𝑛 + 1
co-run	𝐴𝐸𝑇𝑠,	𝐴𝐸𝑇I(𝑐) for	each	program	i and	𝐴𝐸𝑇(𝑐)
for	the	group,	are	the	same:

� Detailed	modeling	is described	in	paper.

6/29/16 Usenix ATC'16 18

Evaluation

�AET vs Counter Stacks (OSDI’14)
�AET vs SHARDS (FAST’15)
� Shared Cache AET

6/29/16 Usenix ATC'16 19

AET	vs	Counter	Stacks

� Counter	Stacks:
� Only	requires	extremely	small	space	while	maintaining	an	
acceptable	accuracy.

� HyperLogLog counter	to	track	reuse	distance.
� Balance	accuracy	and	space	by	limiting	the	number	of	counters.

� Benchmarks:
� Microsoft	Research	Cambridge	(MSR)	storage	traces.
� Configured	with	only	read	requests	of	4KB	cache	blocks.

6/29/16 Usenix ATC'16 20

AET	vs	Counter	Stacks

6/29/16 Usenix ATC'16 21

AET	vs	Counter	Stacks

6/29/16 Usenix ATC'16 22

AET	Random
Sampling
(𝟏	 ∗ 	𝟏𝟎M𝟓)

AET	Reservoir	
Sampling
8k	entries

Counter	Stacks
High	fidelity
(d	=	1M,	s	=	
60,	δ	=	0.02)

Counter	Stacks
Low	fidelity
(d	=	1M,	s	=	
3600,	δ	=	0.1)

Mean	
Absolute	
Error

0.96% 1.12% 0.77% 1.26%

Average
Space Cost

452KB 384KB 7363KB 1292KB

Average
Throughput

63.99M	
reqs/sec

61.99M	
reqs/sec

1.73M	
reqs/sec

5.86M	
reqs/sec

AET	vs	SHARDS
� SHARDS:

� hash-based	spatial	sampling	
� a	splay	tree	to	track	the	reuse	distances	of	the	sampled	data.
� Limits	the	space	overhead	to	a	constant	by	adaptively	lowering	the	
sampling	rate.

� Benchmarks:
� “master”	MSR,	which	is	a	2.4	billion-access	trace	combining	all	13	
MSR	traces	by	ranking	the	time	stamps	of	all	accesses.	

6/29/16 Usenix ATC'16 23

AET	vs	SHARDS

6/29/16 Usenix ATC'16 24

AET	vs	SHARDS

6/29/16 Usenix ATC'16 25

AET	Random
Sampling
(𝟏	 ∗ 	𝟏𝟎M𝟓)

AET	Reservoir
Sampling
8k samples

SHARDS
8k samples

Counter	
Stacks

Mean	
Absolute	
Error

1% 1% 0.6% 0.3%

Average
Space Cost

1.7MB 1.4MB 2.3MB 80MB

Average
Throughput

79M	
reqs/sec

66.6M	
reqs/sec

81.4M	
reqs/sec

3.2M
reqs/sec

Shared	Cache	AET

�We choose Four MSR	storage	traces	{prn,	src2,	web,	stg}	
as	a	co-run	group.

� Generate	a	combined	trace	from	the	four	traces	under	
equal	speed	assumption.

�We	compare	MRC	composed	by	individual	AET	modeling	
of	each	trace,	as	well	as	the	real	MRC	of	the	combined	
trace.

6/29/16 Usenix ATC'16 26

Shared	Cache	AET

6/29/16 Usenix ATC'16 27

Summary

6/29/16 Usenix ATC'16 28

•A	new	model	to	characterize	cache	behavior.
• Enable	fast	MRC	profiling	with	O(1)	space	and	O(n)	time.
•Predict	shared	cache	MRC	without	co-run	testing.
•Perfect	for	online	deployment	with	limited	overhead.

Thank	you	for	your	attention!

Q&A
Email:		hxm@pku.edu.cn

6/29/16 Usenix ATC'16 29

AET	vs	StatStack
� StatStack:

� Designed	for	CPU	workloads.	
� It	samples	cache	blocks	and	measures	their	reuse	time	using	
performance	counters	and	watchpoints.

� Reuse	time	histogram	->	Reuse	distance	histogram.
� Benchmarks:

� SPEC	CPU2006,	30	benchmarks.
� For	each	benchmark,	we	intercept	1	billion	references	from	their	
execution	using	the	instrumentation	tool	Pin.

� We	measure	the	cumulative	distribution	function	(CDF)	of	absolute	
error	of	full-trace	StatStack,	full-trace	AET,		sampling	AET.

6/29/16 Usenix ATC'16 30

AET	vs	StatStack

6/29/16 Usenix ATC'16 31

