IN) PEKING
) UNIVERSITY

Kinetic Modeling of Data
Eviction in Cache

Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo
Peking University
Chen Ding
University of Rochester
Zhenlin Wang

Michigan Technological University

6/29/16 Usenix ATC'16

Background

* Miss Ratio Curve (MRC) is a powerful metric for
cache optimization:
- Allocation, Partition, Scheduling, QoS managing...

* Online MRC profiling techniques have been

developed for decades. VIRC
* Ultimate goals: 100%
* Less space consumption. 50%

- Lower time complexity.

6/29/16 Usenix ATC'16

Background

* A brief history of MRC techniques.

A
Stack
P;ocessing
» (1970)
- 4 7 Interval Tree
o 1975
2 Counter Segréh Tree ()
= Stacks / (1981)
2 (2014)
QE’ 7, 7 Scale Tree
= , / (2009)
¥ Working Set
AET SHARDS &Footprint
(This paper) (2015) (1972,2011)
>

Space overhead

6/29/16 Usenix ATC'16

6/2

9/16

Our Model: Average Eviction Time

*Linear time
*Constant space
*Composability

Eviction Time

1st access

2nd access

Eviction
3nd access

6/29/16

1

O 00 N o U B W N

time data

d

d

d

0] o o Q

o

LRU
b C e
a b C
d b C
a b C
d b C
a d b
C a d
b C a
e b C

Usenix ATC'16

Eviction time

Eviction Time

* The eviction time is the time between the last access
and the eviction.

* Property of eviction time:
* |If the reuse time of an access is larger than it’s eviction time,
it’s a miss.

* Reuse time: the time between an access and its next reuse.
The reuse time of cold miss is defined as infinite.

6/29/16 Usenix ATC'16 6

Back to the example

Cold

Reuse time = o .
Miss!

Reuse time = 2 Hit!

Reuse time = 5 Miss!

6/29/16

time data

1

O 00 N OO U b~ W

d

d

d

MRU LRU
a b C e
d a b C
a d b C
d a b C
a d b C
C a d b
b C a d
e b C a
d e b C

Usenix ATC'16

Eviction time = 4

Average Eviction Time

* Average Eviction Time (AET) is the mean eviction

time of all data evictions in a fully associative LRU
cache.

* We can assume all data references with a reuse
time larger than AET are misses.

6/29/16 Usenix ATC'16

How to model AET?

- Move condition #1:

* Cache hit inserts the lower priority position data to the
LRU stack top. MmRU LRU

d a b C

access. a x l l

a d b C

- Move condition #2:

* Cache miss inserts a missed data to the LRU stack top.
MRU LRU

d a b C
access: e \ \ \
e d a b

6/29/16 Usenix ATC'16

How to model AET?

- Stay condition:

* Cache hit inserts the higher priority position data to
the LRU stack top.

MRU LRU
a b d C

access: b . | |

b a d C

6/29/16 Usenix ATC'16

How to model AET?

* We define the arrival time T,,, as the expected time it
takes for an evicting data to reach the m-th position
(from its last access).

- A data block at position m move one step down
whenever the reuse time of current access is greater
than the T,,,.

* P(t) is the probability for an access with a reuse time
greaterthan t.

* The movement condition is now a probability. Every
access, a data block at stack position m moves by

P(T,,) .

6/29/16 Usenix ATC'16

Kinetic Model

- Data travels in one direction with changing speed:

V(t) = P(t)

top e 1 d = .. bottom

* In general, if the time that evicting data already
traveled is t, its’ current evicting speed is P(t).

6/29/16 Usenix ATC'16

Average Eviction Time

* Physics: the integration of speed over time is travel distance.

- The length of LRU list is the travel distance of every eviction. Which
is the cache size c.

AET (¢)
f P(t)dt =c
0

« With P, we calculate AETs of different cache sizes in linear time.

* P can be acquired online by monitoring the reuse time histogram.

6/29/16 Usenix ATC'16

From AET to MRC

*The miss ratio mr(c) at cache size cis the
probability that a reuse time is greater than the
average eviction time AET (¢):

mr(c) = P(AET(c))

6/29/16 Usenix ATC'16

AET Design Overview

Program Access Reuse Time Miss Ratio
: AET
Monitoring Trace Histogram Curve

6/29/16 Usenix ATC'15 15

Random Sampling

* Randomly pick current accessed data to monitor its reuse
time.

* The distance between two sampled is a random value.

* Constrain the random value range to control sampling rate.

* A hash table is required. It maintains current monitored data.
* The space consumptionis linear but limited.

6/29/16 Usenix ATC'16

Reservoir Sampling

* To bound the space costto constant. O(1)

* When the i-th sampled data arrives, reservoir sampling
keeps the new data in monitoring set with probability

min(1, k/i) and randomly discards an old data when the set
is full.

* |t ensures the equal probability for every sampled reuse to
update reuse time histogram.

* While the number of samples be recorded is bounded.

Usenix ATC'16

AET in Shared Cache

- Composability: co-run behavior can be computed
from the metric of solo-runs.

* When n programs share the cache of size c,alln + 1
co-run AETs, AET;(c) for each program iand AET (¢)
for the group, are the same:

AET|(c) = AET»(c) = --- = AET,(c) = AET(c)

* Detailed modeling is described in paper.

6/29/16 Usenix ATC'16

Evaluation

* AET vs Counter Stacks (OSDI’14)
« AET vs SHARDS (FAST’15)
* Shared Cache AET

6/29/16 Usenix ATC'16

AET vs Counter Stacks

* Counter Stacks:

* Only requires extremely small space while maintaining an
acceptable accuracy.

- HyperLoglog counter to track reuse distance.
* Balance accuracy and space by limiting the number of counters.
- Benchmarks:

* Microsoft Research Cambridge (MSR) storage traces.
* Configured with only read requests of 4KB cache blocks.

6/29/16 Usenix ATC'16

AET vs Counter Stacks

5 proj
0.8\———
0.9 , — Real
0.4 mmmmmmnnn AET sampling
o2 1 o0 AL 02 e ||| m—m———— cS-high
0. 350 700 1050 1400 O 63 126 189 252 Y9%0 0.13 0.26 0.39 0.52
1.0; pPrxy 1 src2 1 usr 1 web
0.8 0.8 0.8 0.8
0.68 0.6 “ 0.6 0.6
0. 0.4 7 S — 0.4
0. 0.2 0.2 0.2
0.8, 10 15 20 ¢ 10 20 30 40 O 300 600 900 1200 O 20 40 60 80
1 rsrch N stg 1 wdev
0. 0.
0. 0.
0. 0.
0.2 0. o 0.
0. 20 40 60 80 980 02 04 o6 o8 O 23 46 69 92 9 0 0.06 0.12 0.18 0.24

6/29/16 Usenix ATC'16 2 1

AET vs Counter Stacks

6/29/16

AET Random | AET Reservoir | Counter Stacks | Counter Stacks
Sampling Sampling High fidelity Low fidelity
(1 = 107%) 8k entries (d=1M,s= | (d=1M,s=
60, 6 = 0.02) 3600, 6 = 0.1)
Mean 0.96% 1.12% 0.77% 1.26%
Absolute
Error
Average 452KB 384KB /363KB 1292KB
Space Cost
Average 63.99M 61.99M 1.73M 5.86M
Throughput | reqs/sec reqs/sec reqs/sec reqs/sec

Usenix ATC'16

AET vs SHARDS

- SHARDS:
- hash-based spatial sampling
* a splay tree to track the reuse distances of the sampled data.

* Limits the space overhead to a constant by adaptively lowering the
sampling rate.

* Benchmarks:

* “master” MSR, which is a 2.4 billion-access trace combining all 13
MSR traces by ranking the time stamps of all accesses.

6/29/16 Usenix ATC'16

AET vs SHARDS

1.0
msm Real

06 +-= SHARDS||
e AET

O
o))

miss ratio
o
AN

0.2}

0.0 500 1000 1500 2000 2500 3000

cache size(GB)

6/29/16 Usenix ATC'16 24

AET vs SHARDS

6/29/16

AET Random | AET Reservoir| SHARDS Counter
Sampling Sampling | 8k samples Stacks
(1 * 107>) | 8ksamples
Mean 1% 1% 0.6% 0.3%
Absolute
Error
Average 1.7MB 1.4MB 2.3MB 80MB
Space Cost
Average 79M 66.6M 31.4M 3.2M
Throughput reqs/sec reqs/sec reqs/sec reqs/sec

Usenix ATC'16

Shared Cache AET

* We choose Four MSR storage traces {prn, src2, web, stg}
as a co-run group.

* Generate a combined trace from the four traces under
equal speed assumption.

* We compare MRC composed by individual AET modeling

of each trace, as well as the real MRC of the combined
trace.

6/29/16 Usenix ATC'16

Shared Cache AET

1.0

IIIIIIIII

LR

0.8r
S 0.6/ -
© |z m== Shared AET
I E --= Real
& 0'4—;&/ Hie o prn
?élllllIIIIIIIIIIIIIIIIIIII \Aleat)
02 src2
I Stg
0.00

20 40 60 80 100 120 140 160 180
cache size(GB)
6/29/16

Usenix ATC'16

Ssummary

* A new model to characterize cache behavior.
* Enable fast MRC profiling with O(1) space and O(n) time.
* Predict shared cache MRC without co-run testing.
* Perfect for online deployment with limited overhead.

Time complexity | Space complexity | Memory | Runtime | Composability | Correctness

Stack Processing O(NM) O(N) 10GB > 1 day No accurate

Search Tree O(NlogM) O(M) 21GB 482 secs No accurate
Scale Tree O(NloglogM) O(M) 17GB 333 secs No bounded err
Footprint O(N) O(M) 17GB 50 secs Yes conditional
Counter Stacks O(NlogM) O(logM) S8OMB | 1034 secs No bounded err
SHARDS O(N) O(1) 2.3MB | 29.6 secs No conditional
AET model O(N) O(1) 1.7MB | 30.5 secs Yes conditional

6/29/16

Usenix ATC'16

28

CIN) PEKING
@) UNIVERSITY

Thank you for your attention!

Q&A

Email: hxm@pku.edu.cn

6/29/16

AET vs StatStack

- StatStack:
* Designed for CPU workloads.

* |t samples cache blocks and measures their reuse time using
performance counters and watchpoints.

* Reuse time histogram -> Reuse distance histogram.

* Benchmarks:
« SPEC CPU2006, 30 benchmarks.

* For each benchmark, we intercept 1 billion references from their
execution using the instrumentation tool Pin.

* We measure the cumulative distribution function (CDF) of absolute
error of full-trace StatStack, full-trace AET, sampling AET.

6/29/16 Usenix ATC'16

AET vs StatStack

100%
80%|
@
o 60%|
=
()
O
o 40%]
3 AET
S i StatStack
20% Sa ; _
o W v 1%
N == 0.01%
0.0001% 0.01% 1% T 100%

prediction error

6/29/16 Usenix ATC'16

