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Background

* Miss Ratio Curve (MRC) is a powerful metric for
cache optimization:
- Allocation, Partition, Scheduling, QoS managing...

* Online MRC profiling techniques have been

developed for decades. VIRC
* Ultimate goals: 100%
* Less space consumption. 50%

- Lower time complexity.
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Background

* A brief history of MRC techniques.
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Our Model: Average Eviction Time

*Linear time
*Constant space
*Composability



Eviction Time
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Eviction Time

* The eviction time is the time between the last access
and the eviction.

* Property of eviction time:
* |If the reuse time of an access is larger than it’s eviction time,
it’s a miss.

* Reuse time: the time between an access and its next reuse.
The reuse time of cold miss is defined as infinite.
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Back to the example

Cold

Reuse time = o .
Miss!

Reuse time = 2 Hit!

Reuse time = 5 Miss!
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Average Eviction Time

* Average Eviction Time (AET) is the mean eviction

time of all data evictions in a fully associative LRU
cache.

* We can assume all data references with a reuse
time larger than AET are misses.
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How to model AET?

- Move condition #1:

* Cache hit inserts the lower priority position data to the
LRU stack top. MmRU LRU

d a b C

access. a x l l

a d b C

- Move condition #2:

* Cache miss inserts a missed data to the LRU stack top.
MRU LRU

d a b C
access: e \ \ \
e d a b
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How to model AET?

- Stay condition:

* Cache hit inserts the higher priority position data to
the LRU stack top.

MRU LRU
a b d C

access: b . | |

b a d C
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How to model AET?

* We define the arrival time T,,, as the expected time it
takes for an evicting data to reach the m-th position
(from its last access).

- A data block at position m move one step down
whenever the reuse time of current access is greater
than the T,,,.

* P(t) is the probability for an access with a reuse time
greaterthan t.

* The movement condition is now a probability. Every
access, a data block at stack position m moves by

P(T,,) .
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Kinetic Model

- Data travels in one direction with changing speed:

V(t) = P(t)

top e 1 d = .. bottom

* In general, if the time that evicting data already
traveled is t, its’ current evicting speed is P(t).
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Average Eviction Time

* Physics: the integration of speed over time is travel distance.

- The length of LRU list is the travel distance of every eviction. Which
is the cache size c.

AET (¢)
f P(t)dt =c
0

« With P, we calculate AETs of different cache sizes in linear time.

* P can be acquired online by monitoring the reuse time histogram.
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From AET to MRC

*The miss ratio mr(c) at cache size cis the
probability that a reuse time is greater than the
average eviction time AET (¢):

mr(c) = P(AET(c))
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AET Design Overview

Program Access Reuse Time Miss Ratio
: AET
Monitoring Trace Histogram Curve
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Random Sampling

* Randomly pick current accessed data to monitor its reuse
time.

* The distance between two sampled is a random value.

* Constrain the random value range to control sampling rate.

* A hash table is required. It maintains current monitored data.
* The space consumptionis linear but limited.
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Reservoir Sampling

* To bound the space costto constant. O(1)

* When the i-th sampled data arrives, reservoir sampling
keeps the new data in monitoring set with probability

min(1, k/i) and randomly discards an old data when the set
is full.

* |t ensures the equal probability for every sampled reuse to
update reuse time histogram.

* While the number of samples be recorded is bounded.
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AET in Shared Cache

- Composability: co-run behavior can be computed
from the metric of solo-runs.

* When n programs share the cache of size c,alln + 1
co-run AETs, AET;(c) for each program iand AET (¢)
for the group, are the same:

AET|(c) = AET»(c) = --- = AET,(c) = AET(c)

* Detailed modeling is described in paper.
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Evaluation

* AET vs Counter Stacks (OSDI’14)
« AET vs SHARDS (FAST’15)
* Shared Cache AET
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AET vs Counter Stacks

* Counter Stacks:

* Only requires extremely small space while maintaining an
acceptable accuracy.

- HyperLoglog counter to track reuse distance.
* Balance accuracy and space by limiting the number of counters.
- Benchmarks:

* Microsoft Research Cambridge (MSR) storage traces.
* Configured with only read requests of 4KB cache blocks.
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AET vs Counter Stacks
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AET vs Counter Stacks
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AET Random | AET Reservoir | Counter Stacks | Counter Stacks
Sampling Sampling High fidelity Low fidelity
(1 = 107%) 8k entries (d=1M,s= | (d=1M,s=
60, 6 = 0.02) 3600, 6 = 0.1)
Mean 0.96% 1.12% 0.77% 1.26%
Absolute
Error
Average 452KB 384KB /363KB 1292KB
Space Cost
Average 63.99M 61.99M 1.73M 5.86M
Throughput | reqs/sec reqs/sec reqs/sec reqs/sec
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AET vs SHARDS

- SHARDS:
- hash-based spatial sampling
* a splay tree to track the reuse distances of the sampled data.

* Limits the space overhead to a constant by adaptively lowering the
sampling rate.

* Benchmarks:

* “master” MSR, which is a 2.4 billion-access trace combining all 13
MSR traces by ranking the time stamps of all accesses.
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AET vs SHARDS
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AET vs SHARDS
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AET Random | AET Reservoir| SHARDS Counter
Sampling Sampling | 8k samples Stacks
(1 * 107>) | 8ksamples
Mean 1% 1% 0.6% 0.3%
Absolute
Error
Average 1.7MB 1.4MB 2.3MB 80MB
Space Cost
Average 79M 66.6M 31.4M 3.2M
Throughput reqs/sec reqs/sec reqs/sec reqs/sec
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Shared Cache AET

* We choose Four MSR storage traces {prn, src2, web, stg}
as a co-run group.

* Generate a combined trace from the four traces under
equal speed assumption.

* We compare MRC composed by individual AET modeling

of each trace, as well as the real MRC of the combined
trace.
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Shared Cache AET
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Ssummary

* A new model to characterize cache behavior.
* Enable fast MRC profiling with O(1) space and O(n) time.
* Predict shared cache MRC without co-run testing.
* Perfect for online deployment with limited overhead.

Time complexity | Space complexity | Memory | Runtime | Composability | Correctness

Stack Processing O(NM) O(N) 10GB > 1 day No accurate

Search Tree O(NlogM) O(M) 21GB 482 secs No accurate
Scale Tree O(NloglogM) O(M) 17GB 333 secs No bounded err
Footprint O(N) O(M) 17GB 50 secs Yes conditional
Counter Stacks O(NlogM) O(logM) S8OMB | 1034 secs No bounded err
SHARDS O(N) O(1) 2.3MB | 29.6 secs No conditional
AET model O(N) O(1) 1.7MB | 30.5 secs Yes conditional
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Thank you for your attention!

Q&A

Email: hxm@pku.edu.cn
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AET vs StatStack

- StatStack:
* Designed for CPU workloads.

* |t samples cache blocks and measures their reuse time using
performance counters and watchpoints.

* Reuse time histogram -> Reuse distance histogram.

* Benchmarks:
« SPEC CPU2006, 30 benchmarks.

* For each benchmark, we intercept 1 billion references from their
execution using the instrumentation tool Pin.

* We measure the cumulative distribution function (CDF) of absolute
error of full-trace StatStack, full-trace AET, sampling AET.
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AET vs StatStack
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