
Multicore Locks: The Case is not Closed Yet

Hugo Guiroux, Renaud Lachaize, Vivien Quéma

June 24, 2016

Université Grenoble Alpes

Grenoble INP



Synchronization on Modern

Multicore Machines



Synchronization

• Most multi-threaded applications require synchronization.

• As the number of cores increases, the synchronization

primitives become a bottleneck.

• The design of efficient multicore locks is still a hot research

topic: (e.g., [ASPLOS’10], [ATC’12], [OLS’12], [PPoPPP’12],

[SOSP’13], [OOPSLA’14], [PPoPP’15], [PPoPP’16]).

1



Pthread Mutex Lock

Lock-based synchronization:

pthread mutex lock(&mutex);

// Critical section:

// at most 1 thread here at

// a time

...

pthread mutex unlock(&mutex);

Plethora of locking algorithms.

Goals:

• Performance

• Throughput: at high

contention

• Latency: at low contention

• Fairness

• Energy efficiency

2



Pthread Mutex Lock

Lock-based synchronization:

pthread mutex lock(&mutex);

// Critical section:

// at most 1 thread here at

// a time

...

pthread mutex unlock(&mutex);

Plethora of locking algorithms.

Goals:

• Performance

• Throughput: at high

contention

• Latency: at low contention

• Fairness

• Energy efficiency

2



Problem Statement I

• Applications suffer from lock contention

• Plethora of locks algorithms

• Developers are puzzled:

• Does it really matters for my application/my setup?

• How to choose?

• Will the chosen lock perform reasonably well on most setups?

• Should we simply discard old/simple locks?

3



Problem Statement II

• Previous studies:

• Are mostly based on microbenchmarks . . .

• . . . or on workloads for which a new lock was specifically

designed

• Do not consider state-of-the-art algorithms that are known to

perform well (e.g., recent hierarchical locks) or important

parameters (e.g., the choice of waiting policy)

4



Contributions

1. Extended study:

5



Contributions

1. Extended study:

27 locks

5



Contributions

1. Extended study:

27 locks

39 applications

5



Contributions

1. Extended study:

27 locks

39 applications

3 machines

5



Contributions

1. Extended study:

27 locks

39 applications

3 machines

With/without
pinning

5



Contributions

1. Extended study:

27 locks

39 applications

3 machines

With/without
pinning

2. Library for transparent replacement of the lock algorithm

5



Outline

Locks Algorithms

LiTL: Library for Transparent Lock Interposition

Study of lock/application behavior

Conclusion

6



Taxonomy of Multicore Locks Algorithms I

Flat Algorithms

• e.g., Spinlock, Backoff

• Principle:

• Loop on a single memory address

• Use atomic instruction

• Pros:

• Very fast under low lock contention

• Cons:

• Collapse under high contention due to cache coherence traffic

7



Taxonomy of Multicore Locks Algorithms II

Queue-Based Algorithms

• e.g., MCS, CLH

• Principle:

• List of waiting threads

• Each thread spins on a private variable

• Pros:

• Mitigation of cache invalidations

• Fairness

• Cons:

• Inefficient lock handover if successor has been descheduled

• Memory locality issue (lack of NUMA awareness)

8



Taxonomy of Multicore Locks Algorithms III

Hierarchical Algorithms

• e.g., Cohort locks, AHMCS

• Principle:

• One local lock per NUMA node + one global lock

• Per-node batching

• Pros:

• Good behavior on NUMA hierarchies under high contention

• Cons:

• Short-time unfairness

• High costs under low lock contention

9



Taxonomy of Multicore Locks Algorithms IV

Load-control Algorithms

• e.g., MCS-TimePub, Malthusian locks

• Principle:

• Bypass threads in the waiting list

• Reduce the number of threads trying to acquire the lock

• Pros:

• Better resilience under resource contention

• Cons:

• Fairness

10



Taxonomy of Multicore Locks Algorithms V

Delegation-Based Algorithms

• e.g., RCL, CC-Synch

• Principle:

• One thread executes the critical section on behalf of the others

• Not general purpose, designed for highly contended locks

• Not considered here:

• Need to rewrite the code application

• Does not support thread-local data, nested locking, . . .

11



Waiting Policy

• Another design dimension (for most locks)

• What should a thread do while waiting for a lock?

• Park: sleep (default Pthread policy)

• Spin: busy-wait (active)

• Spin-Then-Park: spin a little, then go to sleep

12



LiTL: Library for Transparent Lock

Interposition



LiTL: Overview

• Motivation

• Implementing all existing locks into all applications is laborious

• No existing library to try a lock implementation easily

• LiTL: lock library on top of Pthread Mutex lock API

• Support unmodified application via library interposition

• Supports condition variables

• Supports nested critical sections

• 27 locks (easy to add new ones)

https://github.com/multicore-locks/litl

13



LiTL Design Challenges: Lock Context

• Many lock algorithms rely on “contexts”

• The Pthread Mutex lock API does not consider contexts

• Solution:

• Each lock instance comes with an array of contexts, with one

entry per thread to support nested critical sections

• Pthread Mutex lock → custom lock via hash table (CLHT)

14



LiTL Design Challenges: Supporting Condition Variables

• Approach: reuse Pthread Condition variable

1. Take an uncontended Pthread lock with the optimized lock

2. Use the Pthread lock on cond wait (paper)

15



Overhead Evaluation

• Comparison with manual implementation of all locks on 3

lock-intensive applications

• General trends are preserved

• Average performance difference is below 5%

16



Study of lock/application behavior



Methodology

• 5% tolerance margin to take into account deviation

• Optimal lock: best or at most 5% of performance degradation

of the best

17



Methodology

• 5% tolerance margin to take into account deviation

• Optimal lock: best or at most 5% of performance degradation

of the best

• Linux (3.17.6)

• 3 machines

• A-64: AMD 64 cores, 8 nodes

• A-48: AMD 48 cores, 8 nodes

• I-48: Intel 48 cores, 4 nodes (no hyperthreading)

• Most results presented here are from the A-64 machine

• We vary the number of threads used to launch the

applications.

17



Lock-Sensitive Applications

• 60% of the studied applications are lock sensitive

0%

10%

25%

50%

75%
80%

s
ra

yt
ra

ce
ll

fa
ce

sim

ra
dio

sit
y

ll

ss
l pr

ox
y

s
ra

yt
ra

ce

fe
rre

t

st
re

am
clu

st
er

st
re

am
clu

st
er

ll

ded
up

m
at

rix
m

ulti
ply

pca
ll

m
ys

qld
vip

s
pca

fluid
an

im
at

e

lin
ea

r re
gr

es
sio

n

vo
lre

nd

wat
er

sp
at

ia
l

oce
an

cp

oce
an

ncp

wat
er

nsq
uar

ed

ra
dio

sit
y
fm

m

bar
nes

hist
og

ra
m

wor
d

co
unt fft

st
rin

g
m

at
ch

bodyt
ra

ck

km
ea

ns

sw
ap

tio
ns

lu
ncb

ra
dix

x2
64

ca
nnea

l

fre
qm

in
e
lu

cb

bla
ck

sc
hol

es

p
ra

yt
ra

ce

R
el

at
iv

e
S

ta
n

d
ar

d
D

ev
ia

ti
on

at
M

ax
N

o
d

es

Locks impact application performance
18



Impact of the Number of Nodes

We consider 2 configurations per application:

• Maximum number of nodes: use all cores of the machine

• Optimized number of nodes: take the number of nodes for a
given lock/application maximizing performance

• not all locks have the same optimized number of nodes

• avoid performance collapse

• take the best of each lock

Number of nodes impacts lock performance

19



How Much do Locks Impact Applications?

• At 1 node, reduced impact

• From 2% to 683%:

• avg. 4%, med. 7%

• At max nodes, huge impact

• From 42% to 3343%:

• avg. 727%, med. 91%

• At opt nodes, significant impact

• From 6% to 683%:

• avg. 105%, med. 17%

20



Are Some Locks Always Among the Best? I

0%

25%

50%

75%

ah
m

cs

al
ock

-ls

bac
ko

ff

cb
om

cs
sp

in

cb
om

cs
st

p
clh

-ls

clh
sp

in

clh
st

p

c-
ptl-

tk
t

c-
tk

t-t
kt

hm
cs

htic
ke

t-l
s

m
al

th
sp

in

m
al

th
st

p

m
cs

-ls

m
cs

sp
in

m
cs

st
p

m
cs

-ti
m

ep
ub

par
tit

io
ned

pth
re

ad

pth
re

ad
ad

ap
t

sp
in

lo
ck

sp
in

lo
ck

-ls

tic
ke

t

tic
ke

t-l
s

tt
as

tt
as

-ls

1 Node

Fraction of lock-sensitive applications for which a given lock is optimal

At 1 node, no always-winning lock
80% coverage

21



Are Some Locks Always Among the Best? II

0%

25%

50%

75%

ah
m

cs

al
ock

-ls

bac
ko

ff

cb
om

cs
sp

in

cb
om

cs
st

p
clh

-ls

clh
sp

in

clh
st

p

c-
ptl-

tk
t

c-
tk

t-t
kt

hm
cs

htic
ke

t-l
s

m
al

th
sp

in

m
al

th
st

p

m
cs

-ls

m
cs

sp
in

m
cs

st
p

m
cs

-ti
m

ep
ub

par
tit

io
ned

pth
re

ad

pth
re

ad
ad

ap
t

sp
in

lo
ck

sp
in

lo
ck

-ls

tic
ke

t

tic
ke

t-l
s

tt
as

tt
as

-ls

Max Nodes Opt Nodes

Fraction of lock-sensitive applications for which a given lock is optimal

At max and opt nodes, even worse
52% coverage

22



Are All Locks Potentially Harmful?

0%

42%

25%

50%

75%

ah
m

cs

al
ock

-ls

bac
ko

ff

cb
om

cs
sp

in

cb
om

cs
st

p
clh

-ls

clh
sp

in

clh
st

p

c-
ptl-

tk
t

c-
tk

t-t
kt

hm
cs

htic
ke

t-l
s

m
al

th
sp

in

m
al

th
st

p

m
cs

-ls

m
cs

sp
in

m
cs

st
p

m
cs

-ti
m

ep
ub

par
tit

io
ned

pth
re

ad

pth
re

ad
ad

ap
t

sp
in

lo
ck

sp
in

lo
ck

-ls

tic
ke

t

tic
ke

t-l
s

tt
as

tt
as

-ls

Max Nodes Opt Nodes

Fraction of lock-sensitive applications for which a given lock degrades the
performance w.r.t. the best lock (by at least 15%)

Always several applications for which a given
lock hurts performance

23



Is There a Stable Hierarchy Between Locks?

The lock hierarchy for an application strongly changes with:

• The number of nodes:

• On average, only 27% of the pairwise comparisons are

conserved

• The machine:

• On average, only 30% of the pairwise comparisons are

conserved

24



Additional Remarks

• Using thread pinning does not change the general

observations

• Pthread Mutex locks perform relatively well (i.e., are among

the best locks) for a significant share of the studied

applications

25



Conclusion



Summary of Observations

• 60% of the studied applications are lock sensitive

• Lock behavior is strongly impacted by the number of nodes

• Locks impact applications both at max and opt nodes

• No lock is always among the best

• There is no stable hierarchy between locks

• The number of threads impacts the lock hierarchy

• The machine impacts the lock hierarchy

• All locks are potentially harmful

• Using thread pinning leads to the same conclusions

• Pthreads locks perform reasonably well

26



Conclusion

• Lock algorithms should not be hardwired into the code of

applications.

• The observed trends call for further research on

• new lock algorithms

• runtime support for

• parallel performance

• contention management

Extended version of the paper + Data Sets + Source Code

https://github.com/multicore-locks/litl/

27



Conclusion

• Lock algorithms should not be hardwired into the code of

applications.
• The observed trends call for further research on

• new lock algorithms

• runtime support for

• parallel performance

• contention management

Extended version of the paper + Data Sets + Source Code

https://github.com/multicore-locks/litl/

Thank you for your attention.

27


	Locks Algorithms
	LiTL: Library for Transparent Lock Interposition
	Study of lock/application behavior
	Conclusion

