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Synchronization

e Most multi-threaded applications require synchronization.

e As the number of cores increases, the synchronization
primitives become a bottleneck.

e The design of efficient multicore locks is still a hot research
topic: (e.g., [ASPLOS'10], [ATC'12], [OLS'12], [PPoPPP'12],
[SOSP'13], [OOPSLA'14], [PPoPP'15], [PPoPP’16]).



Pthread Mutex Lock

Lock-based synchronization:

pthread-mutex_lock (&mutex) ;
// Critical section:

// at most 1 thread here at
// a time

pthread-mutex_unlock (&mutex) ;




Pthread Mutex Lock

Plethora of locking algorithms.
Lock-based synchronization: Goals:

e Performance
pthread-mutex_lock (&mutex) ;
// Critical section:
// at most 1 thread here at
// a time

e Throughput: at high
contention

e Latency: at low contention

pthread mutex_unlock (&mutex) ; e Fairness

e Energy efficiency



Problem Statement |

e Applications suffer from lock contention

e Plethora of locks algorithms

e Developers are puzzled:
e Does it really matters for my application/my setup?
e How to choose?
e Will the chosen lock perform reasonably well on most setups?

Should we simply discard old/simple locks?



Problem Statement II

e Previous studies:

e Are mostly based on microbenchmarks ...

e ...or on workloads for which a new lock was specifically
designed

e Do not consider state-of-the-art algorithms that are known to
perform well (e.g., recent hierarchical locks) or important
parameters (e.g., the choice of waiting policy)
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Contributions

1. Extended study:

27 locks 3 machines
L With /without
39 applications pinning

2. Library for transparent replacement of the lock algorithm



Locks Algorithms
LiTL: Library for Transparent Lock Interposition
Study of lock/application behavior

Conclusion



Taxonomy of Multicore Locks Algorithms |

Flat Algorithms

e.g., Spinlock, Backoff

Principle:
e Loop on a single memory address
e Use atomic instruction

e Pros:
e Very fast under low lock contention
e Cons:

e Collapse under high contention due to cache coherence traffic



Taxonomy of Multicore Locks Algorithms Il

Queue-Based Algorithms

e eg., MCS, CLH
e Principle:

e List of waiting threads
e Each thread spins on a private variable

e Pros:
e Mitigation of cache invalidations
e Fairness

e Cons:

e |nefficient lock handover if successor has been descheduled
e Memory locality issue (lack of NUMA awareness)



Taxonomy of Multicore Locks Algorithms IlI

Hierarchical Algorithms

e e.g., Cohort locks, AHMCS

Principle:

e One local lock per NUMA node + one global lock
e Per-node batching

e Pros:
e Good behavior on NUMA hierarchies under high contention
e Cons:

e Short-time unfairness
e High costs under low lock contention



Taxonomy of Multicore Locks Algorithms IV

Load-control Algorithms

e.g., MCS-TimePub, Malthusian locks

Principle:

e Bypass threads in the waiting list
e Reduce the number of threads trying to acquire the lock

e Pros:
e Better resilience under resource contention
e Cons:

e Fairness
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Taxonomy of Multicore Locks Algorithms V

Delegation-Based Algorithms

e e.g., RCL, CC-Synch
e Principle:

e One thread executes the critical section on behalf of the others

e Not general purpose, designed for highly contended locks
e Not considered here:

e Need to rewrite the code application

e Does not support thread-local data, nested locking, ...
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Waiting Policy

e Another design dimension (for most locks)
e What should a thread do while waiting for a lock?

e Park: sleep (default Pthread policy)
e Spin: busy-wait (active)
e Spin-Then-Park: spin a little, then go to sleep
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LiTL: Library for Transparent Lock
Interposition




LiTL: Overview

e Motivation
e Implementing all existing locks into all applications is laborious
e No existing library to try a lock implementation easily

e LiTL: lock library on top of Pthread Mutex lock API

e Support unmodified application via library interposition
e Supports condition variables

e Supports nested critical sections

e 27 locks (easy to add new ones)

https://github.com /multicore-locks/litl
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LiTL Design Challenges: Lock Context

e Many lock algorithms rely on “contexts”

e The Pthread Mutex lock APl does not consider contexts

e Solution:

e Each lock instance comes with an array of contexts, with one
entry per thread to support nested critical sections
e Pthread Mutex lock — custom lock via hash table (CLHT)
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LiTL Design Challenges: Supporting Condition Variables

e Approach: reuse Pthread Condition variable

1. Take an uncontended Pthread lock with the optimized lock
2. Use the Pthread lock on cond_wait (paper)
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Overhead Evaluation

e Comparison with manual implementation of all locks on 3

lock-intensive applications
e General trends are preserved

e Average performance difference is below 5%
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Study of lock/application behavior




Methodology

e 5% tolerance margin to take into account deviation

e Optimal lock: best or at most 5% of performance degradation
of the best
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Methodology

e 5% tolerance margin to take into account deviation
e Optimal lock: best or at most 5% of performance degradation
of the best
Linux (3.17.6)
3 machines

e A-64: AMD 64 cores, 8 nodes
e A-48: AMD 48 cores, 8 nodes
e |-48: Intel 48 cores, 4 nodes (no hyperthreading)

Most results presented here are from the A-64 machine

We vary the number of threads used to launch the

applications.
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Sensitive Applications

e 60% of the studied applications are lock sensitive
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Impact of the Number of Nodes

We consider 2 configurations per application:

e Maximum number of nodes: use all cores of the machine

e Optimized number of nodes: take the number of nodes for a
given lock/application maximizing performance

e not all locks have the same optimized number of nodes
e avoid performance collapse
e take the best of each lock

Number of nodes impacts lock performance

19



How Much do Locks Impact Applications?

e At 1 node, reduced impact
e From 2% to 683%:
e avg. 4%, med. 7%

e At max nodes, huge impact
e From 42% to 3343%:
e avg. 727%, med. 91%

e At opt nodes, significant impact
e From 6% to 683%:
e avg. 105%, med. 17%
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Some Locks Always Among the Best? |
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At 1 node, no always-winning lock
80% coverage
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Are Some Locks Always Among the Best? Il
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Are All Locks Potentially Harmful?
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Is There a Stable Hierarchy Between Locks?

The lock hierarchy for an application strongly changes with:

e The number of nodes:

e On average, only 27% of the pairwise comparisons are
conserved

e The machine:

e On average, only 30% of the pairwise comparisons are
conserved
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Additional Remarks

e Using thread pinning does not change the general
observations

e Pthread Mutex locks perform relatively well (i.e., are among
the best locks) for a significant share of the studied

applications
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Conclusion




Summary of Observations

e 60% of the studied applications are lock sensitive
e Lock behavior is strongly impacted by the number of nodes
e Locks impact applications both at max and opt nodes

e No lock is always among the best
e There is no stable hierarchy between locks

e The number of threads impacts the lock hierarchy
e The machine impacts the lock hierarchy

e All locks are potentially harmful
e Using thread pinning leads to the same conclusions

e Pthreads locks perform reasonably well
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Conclusion

e Lock algorithms should not be hardwired into the code of
applications.
e The observed trends call for further research on

e new lock algorithms
e runtime support for
e parallel performance
e contention management

Extended version of the paper + Data Sets + Source Code
https://github.com/multicore-locks/litl /
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Conclusion

e Lock algorithms should not be hardwired into the code of
applications.
e The observed trends call for further research on
e new lock algorithms
e runtime support for
e parallel performance
e contention management

Extended version of the paper + Data Sets + Source Code
https://github.com /multicore-locks/litl/

Thank you for your attention.
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