, UNIVERSITE Grenobte\lNlP)‘
' Grenoble /

% Alpes /

Multicore Locks: The Case is not Closed Yet

Hugo Guiroux, Renaud Lachaize, Vivien Quéma
June 24, 2016

Université Grenoble Alpes
Grenoble INP

Synchronization on Modern
Multicore Machines

Synchronization

e Most multi-threaded applications require synchronization.

e As the number of cores increases, the synchronization
primitives become a bottleneck.

e The design of efficient multicore locks is still a hot research
topic: (e.g., [ASPLOS'10], [ATC'12], [OLS'12], [PPoPPP'12],
[SOSP'13], [OOPSLA'14], [PPoPP'15], [PPoPP’16]).

Pthread Mutex Lock

Lock-based synchronization:

pthread-mutex_lock (&mutex) ;
// Critical section:

// at most 1 thread here at
// a time

pthread-mutex_unlock (&mutex) ;

Pthread Mutex Lock

Plethora of locking algorithms.
Lock-based synchronization: Goals:

e Performance
pthread-mutex_lock (&mutex) ;
// Critical section:
// at most 1 thread here at
// a time

e Throughput: at high
contention

e Latency: at low contention

pthread mutex_unlock (&mutex) ; e Fairness

e Energy efficiency

Problem Statement |

e Applications suffer from lock contention

e Plethora of locks algorithms

e Developers are puzzled:
e Does it really matters for my application/my setup?
e How to choose?
e Will the chosen lock perform reasonably well on most setups?

Should we simply discard old/simple locks?

Problem Statement II

e Previous studies:

e Are mostly based on microbenchmarks ...

e ...or on workloads for which a new lock was specifically
designed

e Do not consider state-of-the-art algorithms that are known to
perform well (e.g., recent hierarchical locks) or important
parameters (e.g., the choice of waiting policy)

Contributions

1. Extended study:

Contributions

1. Extended study:

27 locks

Contributions

1. Extended study:

27 locks

39 applications

Contributions

1. Extended study:

e 3 machines

39 applications

Contributions

1. Extended study:
27 locks 3 machines

With /without
39 applications pinning

Contributions

1. Extended study:

27 locks 3 machines
L With /without
39 applications pinning

2. Library for transparent replacement of the lock algorithm

Locks Algorithms
LiTL: Library for Transparent Lock Interposition
Study of lock/application behavior

Conclusion

Taxonomy of Multicore Locks Algorithms |

Flat Algorithms

e.g., Spinlock, Backoff

Principle:
e Loop on a single memory address
e Use atomic instruction

e Pros:
e Very fast under low lock contention
e Cons:

e Collapse under high contention due to cache coherence traffic

Taxonomy of Multicore Locks Algorithms Il

Queue-Based Algorithms

e eg., MCS, CLH
e Principle:

e List of waiting threads
e Each thread spins on a private variable

e Pros:
e Mitigation of cache invalidations
e Fairness

e Cons:

e |nefficient lock handover if successor has been descheduled
e Memory locality issue (lack of NUMA awareness)

Taxonomy of Multicore Locks Algorithms IlI

Hierarchical Algorithms

e e.g., Cohort locks, AHMCS

Principle:

e One local lock per NUMA node + one global lock
e Per-node batching

e Pros:
e Good behavior on NUMA hierarchies under high contention
e Cons:

e Short-time unfairness
e High costs under low lock contention

Taxonomy of Multicore Locks Algorithms IV

Load-control Algorithms

e.g., MCS-TimePub, Malthusian locks

Principle:

e Bypass threads in the waiting list
e Reduce the number of threads trying to acquire the lock

e Pros:
e Better resilience under resource contention
e Cons:

e Fairness

10

Taxonomy of Multicore Locks Algorithms V

Delegation-Based Algorithms

e e.g., RCL, CC-Synch
e Principle:

e One thread executes the critical section on behalf of the others

e Not general purpose, designed for highly contended locks
e Not considered here:

e Need to rewrite the code application

e Does not support thread-local data, nested locking, ...

11

Waiting Policy

e Another design dimension (for most locks)
e What should a thread do while waiting for a lock?

e Park: sleep (default Pthread policy)
e Spin: busy-wait (active)
e Spin-Then-Park: spin a little, then go to sleep

12

LiTL: Library for Transparent Lock
Interposition

LiTL: Overview

e Motivation
e Implementing all existing locks into all applications is laborious
e No existing library to try a lock implementation easily

e LiTL: lock library on top of Pthread Mutex lock API

e Support unmodified application via library interposition
e Supports condition variables

e Supports nested critical sections

e 27 locks (easy to add new ones)

https://github.com /multicore-locks/litl

13

LiTL Design Challenges: Lock Context

e Many lock algorithms rely on “contexts”

e The Pthread Mutex lock APl does not consider contexts

e Solution:

e Each lock instance comes with an array of contexts, with one
entry per thread to support nested critical sections
e Pthread Mutex lock — custom lock via hash table (CLHT)

14

LiTL Design Challenges: Supporting Condition Variables

e Approach: reuse Pthread Condition variable

1. Take an uncontended Pthread lock with the optimized lock
2. Use the Pthread lock on cond_wait (paper)

15

Overhead Evaluation

e Comparison with manual implementation of all locks on 3

lock-intensive applications
e General trends are preserved

e Average performance difference is below 5%

16

Study of lock/application behavior

Methodology

e 5% tolerance margin to take into account deviation

e Optimal lock: best or at most 5% of performance degradation
of the best

17

Methodology

e 5% tolerance margin to take into account deviation
e Optimal lock: best or at most 5% of performance degradation
of the best
Linux (3.17.6)
3 machines

e A-64: AMD 64 cores, 8 nodes
e A-48: AMD 48 cores, 8 nodes
e |-48: Intel 48 cores, 4 nodes (no hyperthreading)

Most results presented here are from the A-64 machine

We vary the number of threads used to launch the

applications.

17

Sensitive Applications

e 60% of the studied applications are lock sensitive

80%
75%

50%

25%

10%

Relative Standard Deviation at Max Nodes

0%

T | T | LI I I B o T
NN S XRI DR L LS L RRLB L& S ESS - & &
'b& S dQ &\ < g}@&b\’\,ﬁ & A°’°' WS REFS S (,'1\6‘ O NN NSO o
&8 ”5\ e @S L T 56 AR RS
(sﬁ b &6‘ §° P & IEEC \Q\ & Ho S S
b & S & O ¥ & 3 R
“ T S NG & °
& & & K

Locks impact application performance
18

Impact of the Number of Nodes

We consider 2 configurations per application:

e Maximum number of nodes: use all cores of the machine

e Optimized number of nodes: take the number of nodes for a
given lock/application maximizing performance

e not all locks have the same optimized number of nodes
e avoid performance collapse
e take the best of each lock

Number of nodes impacts lock performance

19

How Much do Locks Impact Applications?

e At 1 node, reduced impact
e From 2% to 683%:
e avg. 4%, med. 7%

e At max nodes, huge impact
e From 42% to 3343%:
e avg. 727%, med. 91%

e At opt nodes, significant impact
e From 6% to 683%:
e avg. 105%, med. 17%

20

Some Locks Always Among the Best? |

5%

50%
25%
0%

L — T T T T T
o 20 ‘{\ R N AN I P NP © > o E e P e
@“ & ¢+° ?Q‘ s»“Q &S FFHE LS &“Q & 7‘2‘ A& .o° & &Q & \c“" &
F N F L & ST FT & & S F T R
) &S [N ¢ & &2 <& ¥ @ RS <
&o & & & KR

Fraction of lock-sensitive applications for which a given lock is optimal

At 1 node, no always-winning lock
80% coverage

21

Are Some Locks Always Among the Best? Il

75% =

50% =

25%IIiIIIIh lilliiliiiillll
0% —

i LI
cv \'1 Q\ -\0 & \‘» N g 9 2 & 6‘ a* \% & & \'=
FXF P R T LI T ST T EF LRI E RTLFTE RS Y EE LS
& o 2 & SRR SN NSV AN 2 K & & - TN N <&
TS O&& e E & E & &S & & q,’bb’b & & T ~

RSy <& g @ 58 K

© &

Max Nodes Opt Nodes

Fraction of lock-sensitive applications for which a given lock is optimal

At max and opt nodes, even worse
52% coverage

22

Are All Locks Potentially Harmful?

75% =

50%

42% —

25% i
0%

I I I I I I
R O S RS R 2 L ¥ & e »"
é‘ng&\o S F &S &&quozy\o&véé»ﬁ
p\o@oé?@&c\\?&g,&v\&y\@o@?&&\gc@y@vo\oo.@ <
K &S <© [N &L & o RV RS >
L8 & g @ § K

Max Nodes Opt Nodes

Fraction of lock-sensitive applications for which a given lock degrades the
performance w.r.t. the best lock (by at least 15%)

Always several applications for which a given
lock hurts performance

23

Is There a Stable Hierarchy Between Locks?

The lock hierarchy for an application strongly changes with:

e The number of nodes:

e On average, only 27% of the pairwise comparisons are
conserved

e The machine:

e On average, only 30% of the pairwise comparisons are
conserved

24

Additional Remarks

e Using thread pinning does not change the general
observations

e Pthread Mutex locks perform relatively well (i.e., are among
the best locks) for a significant share of the studied

applications

25

Conclusion

Summary of Observations

e 60% of the studied applications are lock sensitive
e Lock behavior is strongly impacted by the number of nodes
e Locks impact applications both at max and opt nodes

e No lock is always among the best
e There is no stable hierarchy between locks

e The number of threads impacts the lock hierarchy
e The machine impacts the lock hierarchy

e All locks are potentially harmful
e Using thread pinning leads to the same conclusions

e Pthreads locks perform reasonably well

26

Conclusion

e Lock algorithms should not be hardwired into the code of
applications.
e The observed trends call for further research on

e new lock algorithms
e runtime support for
e parallel performance
e contention management

Extended version of the paper + Data Sets + Source Code
https://github.com/multicore-locks/litl /

27

Conclusion

e Lock algorithms should not be hardwired into the code of
applications.
e The observed trends call for further research on
e new lock algorithms
e runtime support for
e parallel performance
e contention management

Extended version of the paper + Data Sets + Source Code
https://github.com /multicore-locks/litl/

Thank you for your attention.

27

	Locks Algorithms
	LiTL: Library for Transparent Lock Interposition
	Study of lock/application behavior
	Conclusion

