
Vasileios Trigonakis | 06.2016
1

Unlocking Energy

Babak Falsafi, Rachid Guerraoui, Javier Picorel, Vasileios Trigonakis

Vasileios Trigonakis | 06.2016
2

Unlocking Energy

Conference Dilemma: To Sleep or Not to Sleep?

For the next 25 minutes

Do not sleep for such short duration

Motivation

sleep



busy wait



locking

Vasileios Trigonakis | 06.2016
3

Unlocking Energy

Energy Efficiency Through Synchronization (Locking)

Why lock-based synchronization?

1. Concurrent systems synchronize with locks

2. Locks are well-defined abstractions

 lock() / unlock()

3. Locking strategies affect power consumption

Motivation

busy lock

lock() wait!
(waste time

and energy)

Vasileios Trigonakis | 06.2016
4

Unlocking Energy

0

0.5

1

1.5

2

Power Energy Efficiency

N
o

rm
al

iz
ed

 t
o

 S
le

ep
in

g

sleeping spinning

Lock Waiting Techniques

Locking is a good candidate for reducing energy consumption

Motivation

busy lock

sleeping

(blocking)

busy waiting

(spinning)

Java CopyOnWriteArrayList

Energy Efficiency

Throughput / Power

Q. Is sleeping energy-friendly?

Vasileios Trigonakis | 06.2016
5

Unlocking Energy

Energy Efficiency By Improving Locking

1. Concurrent systems synchronize with locks

2. Locks are well-defined abstractions

3. Locking strategies affect power consumption

POLY

4.

Energy efficiency and throughput go hand in hand

in the context of lock algorithms

Vasileios Trigonakis | 06.2016
6

Unlocking Energy

Outline

• Motivation

• Improving the energy efficiency of systems

Target platform
2-socket Intel Ivy Bridge

20 cores, 40 hyper-threads

busy lock

busy waiting hurts power consumption

sleeping  saves power, but hurts throughput

spin-then-sleep “cleverly”

Vasileios Trigonakis | 06.2016
7

Unlocking Energy

Observations

Power Consumption of Waiting

Busy waiting is very power hungry

1 lock, never released

Waiting

1. Sleeping power-friendly

2. Busy waiting

while (*lock != FREE) {}

0

20

40

60

80

100

120

140

160

10 20 30 40

P
o

w
er

 (
W

at
ts

)

Threads

sleeping busy waiting

Vasileios Trigonakis | 06.2016
8

Unlocking Energy

Observations

Reducing Power of Busy Waiting

Power consumption of busy waiting cannot be practically reduced

1 lock, never released

Busy Waiting

1. empty: 1 iteration / cycle

2. Intel docs: use pause

3. pause not ideal

4. mfence > pause

5. Still, mfence ~5% better

6. DVFS and mwait

are not practical

(details in the paper)

while (*lock != FREE) { ?? }

0

50

100

150

200

10 20 30 40

P
o

w
er

 (
W

at
ts

)

Threads

empty pause mfence DVFS mwait

Vasileios Trigonakis | 06.2016
9

Unlocking Energy

Outline

• Motivation

• Improving the energy efficiency of systems

busy lock

busy waiting hurts power consumption

sleeping  saves power, but hurts throughput

spin-then-sleep “cleverly”

Vasileios Trigonakis | 06.2016
10

Unlocking Energy

0

0.2

0.4

0.6

0.8

1

sleeping unfair spin fair spin

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

MySQL In-Memory

Sleeping Might Be Necessary (For Two Reasons)

Sleeping can reduce power consumption (and more)

Sleeping

Power Consumption—Waiting Locks with Multiprogramming
1 2

threads >

hw contexts

0

50

100

150

10 20 30 40

P
o

w
er

 (
W

at
ts

)

Threads

sleeping busy waiting

Vasileios Trigonakis | 06.2016
11

Unlocking Energy

Observations

Latency: The Price of Sleeping

Frequent sleep/wake-up calls reduce throughput without saving energy

2 threads invoke futex

1 sleeps,1 wakes up

Sleeping

1. Sleep call:

release context

2. Wake-up call:

to handover the lock

3. Turnaround latency ≈

lock handover latency

0

1000

2000

3000

4000

5000

6000

7000

8000

sleep call wake-up call turnaround

L
at

en
cy

 (
cy

cl
es

)

large critical section

small critical section

Vasileios Trigonakis | 06.2016
12

Unlocking Energy

Outline

• Motivation

• Improving the energy efficiency of systems

busy lock

busy waiting hurts power consumption

sleeping  saves power, but hurts throughput

spin-then-sleep “cleverly”

Vasileios Trigonakis | 06.2016
13

Unlocking Energy

Reducing Fairness: Sleeping for Long Durations

Trade fairness for energy efficiency

Power Consumption Communication Throughput

Passing a “token”

from thread to thread

Sping-then-sleep

0

50

100

150

1 5 10 15 20 25 30 35

P
o

w
er

 (
W

at
ts

)

Threads

sleep spin unfair

0

5

10

15

1 5 10 15 20 25 30 35T
h

ro
u

g
h

p
u

t
(O

p
s/

s)

M
ill

io
ns

Threads

sleep spin unfair

unfair: 1000:1 spin-to-sleep ratio (while 2 threads spin, the rest sleep)

Vasileios Trigonakis | 06.2016
14

Unlocking Energy

How can we use these results in designing locks?

Design locks

Vasileios Trigonakis | 06.2016
15

Unlocking Energy

Problems of Pthread MUTEX lock

Pthread MUTEX does not take into account the sleep overheads

MUTEX

MUTEX

For up to 100 attempts

spin with pause

if still busy, sleep

MUTEX

release in user space

wake up a thread

lock()

unlock()

1. Spins less than sleep latencies

2. Spins with pause

3. Always wakes up a thread

Vasileios Trigonakis | 06.2016
16

Unlocking Energy

MUTEXEE: An Optimized MUTEX Lock

MUTEXEE

MUTEX MUTEXEE

For up to 100 attempts For up to ~8000 cycles

spin with pause spin with mfence

if still busy, sleep

MUTEX MUTEXEE

release in user space (lock->locked = 0)

wait in user space (~300 cycles)

wake up a thread

lock()

unlock()

Vasileios Trigonakis | 06.2016
17

Unlocking Energy

Performance of MUTEXEE over MUTEX

MUTEXEE fixes the problematic cases of MUTEX

One lock

MUTEXEE

10

30

500

1

2

3

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

T

h
re

ad
s

Critical Section (cycles)

10

30

500
1
2
3
4
5
6

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

T

h
re

ad
s

Critical Section (cycles)

Fairness: results and analysis in the paper

Throughput Energy Efficiency

Vasileios Trigonakis | 06.2016
18

Unlocking Energy

Outline

• Motivation

• Improving the energy efficiency of systems

busy lock

busy waiting hurts power consumption

sleeping  saves power, but hurts throughput

spin-then-sleep “cleverly”

Vasileios Trigonakis | 06.2016
19

Unlocking Energy

Evaluation: Improving Energy Efficiency of Systems Through Locks

Six modern software systems

– Overload pthread mutex

Average Throughput and Energy Efficiency

Locking can indeed be used to improve the energy efficiency of systems

Systems

Kyoto
Cabinet

0

0.5

1

1.5

Throughput Energy Efficiency

N
o

rm
al

iz
ed

 t
o

M

U
T

E
X

TICKET MUTEXEE

1.
26

1.
28

Results

1. Benefits: Avoid sleeping

2. Sleeping is sometimes necessary

3. Throughput-driven benefits

4. MUTEXEE >> MUTEX

Vasileios Trigonakis | 06.2016
20

Unlocking Energy

Concluding Remarks

• An analysis of the energy efficiency of lock-based synchronization

– Energy efficiency of locks goes hand in hand with throughput

– MUTEXEE: an optimized MUTEX lock

• LOCKIN: https://github.com/LPD-EPFL/lockin

THANK YOU! QUESTIONS?

Conclusions

 Locking can be used to improve the energy efficiency of systems

https://github.com/LPD-EPFL/lockin

