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Conference Dilemma: To Sleep or Not to Sleep?

For the next 25 minutes

Do not sleep for such short duration

Motivation

sleep



busy wait



locking
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Energy Efficiency Through Synchronization  (Locking)

Why lock-based synchronization?

1. Concurrent systems synchronize with locks

2. Locks are well-defined abstractions

 lock() / unlock()

3. Locking strategies affect power consumption

Motivation

busy lock

lock() wait!
(waste time

and energy)
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Lock Waiting Techniques

Locking is a good candidate for reducing energy consumption

Motivation

busy lock

sleeping

(blocking)

busy waiting

(spinning)

Java CopyOnWriteArrayList

Energy Efficiency

Throughput / Power

Q. Is sleeping energy-friendly?
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Energy Efficiency By Improving Locking

1. Concurrent systems synchronize with locks

2. Locks are well-defined abstractions

3. Locking strategies affect power consumption

POLY

4.

Energy efficiency and throughput go hand in hand 

in the context of lock algorithms
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Outline

• Motivation

• Improving the energy efficiency of systems

Target platform
2-socket Intel Ivy Bridge

20 cores, 40 hyper-threads

busy lock

busy waiting hurts power consumption

sleeping  saves power, but hurts throughput

spin-then-sleep “cleverly”
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Observations

Power Consumption of Waiting

Busy waiting is very power hungry

1 lock, never released

Waiting

1. Sleeping power-friendly

2. Busy waiting

while (*lock != FREE) {}

0

20

40

60

80

100

120

140

160

10 20 30 40

P
o

w
er

 (
W

at
ts

)

# Threads

sleeping busy waiting



Vasileios Trigonakis | 06.2016
8

Unlocking Energy

Observations

Reducing Power of Busy Waiting

Power consumption of busy waiting cannot be practically reduced

1 lock, never released

Busy Waiting

1. empty: 1 iteration / cycle

2. Intel docs: use pause

3. pause not ideal

4. mfence > pause

5. Still, mfence ~5% better

6. DVFS and mwait

are not practical

(details in the paper)

while (*lock != FREE) { ?? }
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Outline

• Motivation

• Improving the energy efficiency of systems

busy lock

busy waiting hurts power consumption

sleeping  saves power, but hurts throughput

spin-then-sleep “cleverly”
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Sleeping Might Be Necessary (For Two Reasons)

Sleeping can reduce power consumption (and more)

Sleeping

Power Consumption—Waiting Locks with Multiprogramming
1 2

# threads >

hw contexts
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Observations

Latency: The Price of Sleeping

Frequent sleep/wake-up calls reduce throughput without saving energy

2 threads invoke futex

1 sleeps,1 wakes up

Sleeping

1. Sleep call: 

release context

2. Wake-up call: 

to handover the lock

3. Turnaround latency ≈ 

lock handover latency
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Outline

• Motivation

• Improving the energy efficiency of systems

busy lock

busy waiting hurts power consumption

sleeping  saves power, but hurts throughput

spin-then-sleep “cleverly”
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Reducing Fairness: Sleeping for Long Durations

Trade fairness for energy efficiency

Power Consumption Communication Throughput

Passing a “token” 

from thread to thread

Sping-then-sleep
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unfair:  1000:1 spin-to-sleep ratio (while 2 threads spin, the rest sleep)
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How can we use these results in designing locks?

Design locks
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Problems of Pthread MUTEX lock

Pthread MUTEX does not take into account the sleep overheads 

MUTEX

MUTEX

For up to 100 attempts

spin with pause

if still busy, sleep

MUTEX

release in user space

wake up a thread

lock()

unlock()

1. Spins less than sleep latencies

2. Spins with pause

3. Always wakes up a thread
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MUTEXEE: An Optimized MUTEX Lock

MUTEXEE

MUTEX MUTEXEE

For up to 100 attempts For up to ~8000 cycles

spin with pause spin with mfence

if still busy, sleep

MUTEX MUTEXEE

release in user space (lock->locked = 0)

wait in user space (~300 cycles)

wake up a thread

lock()

unlock()
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Performance of MUTEXEE over MUTEX

MUTEXEE fixes the problematic cases of MUTEX

One lock

MUTEXEE
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Fairness: results and analysis in the paper

Throughput Energy Efficiency



Vasileios Trigonakis | 06.2016
18

Unlocking Energy

Outline

• Motivation

• Improving the energy efficiency of systems

busy lock

busy waiting hurts power consumption

sleeping  saves power, but hurts throughput

spin-then-sleep “cleverly”
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Evaluation: Improving Energy Efficiency of Systems Through Locks

Six modern software systems

– Overload pthread mutex

Average Throughput and Energy Efficiency

Locking can indeed be used to improve the energy efficiency of systems

Systems

Kyoto
Cabinet
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Results

1. Benefits: Avoid sleeping

2. Sleeping is sometimes necessary

3. Throughput-driven benefits

4. MUTEXEE >> MUTEX
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Concluding Remarks

• An analysis of the energy efficiency of lock-based synchronization

– Energy efficiency of locks goes hand in hand with throughput

– MUTEXEE: an optimized MUTEX lock

• LOCKIN: https://github.com/LPD-EPFL/lockin

THANK YOU! QUESTIONS?

Conclusions

 Locking can be used to improve the energy efficiency of systems

https://github.com/LPD-EPFL/lockin

