Apps with Hardware
Enabling Run-time Architectural
Customization in Smart Phones



Mobile Devices

Devices are designed around certain restrictions

This leads vendors to make tradeoffs

CN>D=X0ID

What if users and developers could choose?
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Vision: Smart Phone with an FPGA




Software-defined Radio

USRP N210
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High-performance Computing

Cryptography
Technology Throughput (GBytes/Sec)
E5503 Xeon Processor 0.01 (Single core)
AMD Radeon HD 7970 0.33
PCle385 FPGA Accelerator 5.20

http://www.nallatech.com/40gbit-aes-encryption-using-opencl-and-fpgas/

Analytics
Ryft ONE Primitive Analytics throughput of a Equivalent Spark cluster
single, fully-populated 1U size
Ryft ONE device (to match Ryft ONE performance)
Search ~10GB/sec > 100 nodes'
Fuzzy Search ~10GB/sec 100-200 nodes?
Term Frequency ~2.5GB/sec 100 nodes!

http://www.datanami.com/2015/03/10/fpga-system-smokes-spark-on-streaming-analytics/ @



Architectural Enhancements

Copilot Integrity Protection

X
'
becmccmmma

......

1 memory

CPU/
cache

bridge/

controller

i other kernel data
and process pages

4

Copilot

PCI local bus

)

//
I/I/E

(SEC 04)

("~ ™
‘ system call |
vector
modified

Admin Station

‘ ccurity Lab
-

. |

" 4 -

" 4 -

Somniloquy (NSDI 09)

- . Host PC
- Somnilogquy
Apps daemon
Operating system, including
networking stack
Host processor, Port filters fp pl?
RAM, peripherals, etc. stubs
| f Embedded OF, incl.
- ' networking stack
Secondary processol
i Embedded CPU,
Metwork interface hardware RAM, flash




Why is now the right time?

SoCs with Programmable Logic coupled with
ARM Cortex A9 (same as iPhone 4 and many other smartphones)

High-level Synthesis
Write C / C++ / SystemC / OpenCL code
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Fundamental Problem:

Sharing the FPGA between applications



What we can already do

App loads: software runs on processor, FPGA configured with hardware

AppX

Processor
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What we can already do

App loads: software runs on processor, FPGA configured with hardware

This is currently possible — run-time reconfiguration
Sort of

Processor
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What we can’t do

What if we have two apps?

AppY

AppY

Software

AppY

Hardware

k. Processor




What we can’t do

What if it’s a single chip (and some |/O goes through the FPGA)

AppY

AppY AppY
Software | | Hardware

1/0

k Processor

‘ /0
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Why hasn’t this been solved before?

* Over a decade of research has proposed two main solutions:
— Run-time place-and-route
— Slot-based reconfiguration
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Approach 1: Run-time Place/Route

* Thereis free space in the FPGA

* Place a new module there
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Approach 1: Run-time Place/Route

e Routing can fail

* Routing is also very time consuming

 Therefore, is not practical




16

Approach 2: Slot-Based Reconfiguration

* |dentical empty regions are

reserved in FPGA

e Constrain tools to:

— Not use wires/logic inside of slots
— Use exact same wires for interface
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Approach 2: Slot-Based Reconfiguration

e Hardware is loaded into slots

* Problem: if other logic exists,
wire routing becomes very
constrained

* Therefore, is also not practical
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Previous Research

* Run-time Place and Route
— Is very computationally expensive

— Can possibly fail

* Slot-base Reconfiguration
— Constrained routing is very restrictive and not applicable generally

* Therefore, previous research is not practical
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Introducing Cloud RTR

* Allows for sharing of the FPGA between general apps

e Uses existing vendor technologies
* Adoptsthe idea of slots from previous research

* Cloud RTR makes existing vendor technology work for general
apps

(o
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The App Deployment Model

ANDROID APP ON

Google play

#_ Available on the
S App Store
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Cloud RTR
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Manufacturer

* Creates a static design
— All logic that does not change

* Design includes areas reserved
for slots

* Sends this to the cloud compiler

22

Static Design
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Developer

* Create an app using existing tools

e Create a hardware definition in C

bool example(ap_uint<32> *in
ap_uint<32> *out,
bool *enabled,

C defined
HW

Android
App




App Store (Cloud Compiler)

* Compiles hardware for each app ApPp
— For each device variant
— For each slot in each variant _
[devicel:
[slotl: a.bit,
| slot2: b.bit,
. . I Cloud — slot3: c.bit]]
Static Design , :
—> Compiler [device 2:

I [slot1: d.bit,
h slot2: e.bit]]
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User (Operating System)

* A system service
manages slots

* Downloaded apps include
slot hardware

* The system service loads
app hardware for apps

.apk:

[device 1:
[slotl: a.bit,
slot2: b.bit,
slot3: c.bit]]
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Security Considerations

* The slot manager enforces access to hardware

* However, FPGAs can theoretically directly access sensitive
resources (while bypassing the OS)

* A secureloading system ensures that apps cannot access
sensitive resources
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Secure loading system

How does the secure loader work?

Slot 1 Slot 2 ICAP

: I Signature Reconfiguration
Operating Syst
R Sy . Verification Module
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Secure loading system

The OS wants to reconfigure Slot 1

Slot 1 Slot 2 ICAP

: Signature Reconfiguration
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Secure loading system

The signature of the module is verified

Slot 1 ICAP

; l Signature Reconfiguration
Signed
module
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Secure loading system

The module is written to the ICAP

Slot 1 Slot 2

Signed

l Sionat - T module
, ignature econfiguratic
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Secure loading system

The ICAP performs the reconfiguration

: l Signature Reconfiguration
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Evaluation

* |s there value in apps with hardware?

* |s the cloud-based compilation of Cloud RTR practical?
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Micro benchmark 1: QAM demodulator
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Micro benchmark 2: AES
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Micro benchmark 3: Memory Scanner

 We also implemented a hardware memory scanner

* |t can scan the entire address space transparently to the OS
— 2.7% memory read performance hit

— 5.5% memory write performance hit

* We tested this using the LMbench testbench
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Brute-force compilation

Google Play Store Figures

# of Apps as of Dec 14
Average Monthly App Growth

# of Apps for January 16

provided by AppFigures.

1.43 Million

6.10%

117,521



Brute-force compilation

Max # of Apps Compiled 2 Slots Requirements
per day

Apps

# of
Slots

2
3
4
5

6

37

121

96

76

59

51

# of Device

Variants
1

10
100
1000

0.1 1
(3) (34)

# of Machines Required to Compile

Apps

10

(347)

_ Reasonable for
==_ most scenarios

It

288
2875
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Brute-force compilation

Max # of Apps Compiled 6 Slots Requirements
per day

# of Apps 0.1 1 10
Slots (3) (34) (347)
2 121 # of Device # of Machines Required to Compile
Variants Apps .
— BN T R
— o IR o
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: > 100 N -
° >t 1002 N - 6809
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Reducing the numbers even more

 Compilation can be offloaded to manufacturers

 Manufacturers will likely reuse designs (Qualcomm, ARM chips
are often reused)

* Developers will likely use libraries
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Implementation Case Study: Orbot

* Tor on Android

 AESis on the critical path

 Examine AES as an integration study

éd ol 0= Al 517
= Orbot

Download Upload
4kbps / 8KB 3kbps / 7KB

NOTICE: Bootstrapped 100%: Done

Check Browser
A i !
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Implementation Case Study: Orbot

What we found:
* Memory operations are the bottleneck

— Data must be placed correctly in memory
— Userspace 1/0 has high overhead
— Many system calls are incompatible with UIO

* Itis easier to build an application from ground-up

é & ol
= Orbot

Download
4kbps / 8KB 3kbps / 7KB

NOTICE: Bootstrapped 100%: Done

Check Browser
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Conclusion

 We have presentedour vision of apps with hardware

* Cloud RTR implements our vision by leveraging the mobile app
deployment model

 We have demonstrated the value and practicality of our vision

(o
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Questions?

* Email: michael.coughlin@colorado.edu

* Source code: https://github.com/nsr-colorado/cloud-rtr
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Vendor Supported Partial Reconfiguration

Goal: Space saving for customer

Target FPGA

Vendor tools

e base.bit
partial_1.bit
e partial_2.bit

u (Partial bitstreams work in 1 location,

and are just for base.bit)

Dynamic Module (s)




45

Examples of Libraries

* Crypto

— Asymmetric (RSA, ECDSA, etc...)

— Symmetric (3DES, Twofish, Blowfish)
e Soft processors

* Encoding

— Network encoding (Reed-Solmon, etc...)
— Media encoding (JPEG, MPEG, etc...)

* DSP
— FFTs, Filters, etc...
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Example hardware definition

bool example(ap_uint<32> *in

ap_uint<32> *out,

bool *enabled,
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More complicated hardware

typedefap_ uint<32>uint32_t hw;
typedef hls::stream<uint32_t _hw>mem_stream32;

bool aes(volatile unsignedint m_mm2s_ctl [500],
volatile unsigned int m_s2mm_ ct|[500],
volatile unsigned sourceAddress,
ap_uint<128> *key in,
ap_uint<128> *iy,
volatile unsigned destinationAddress,
unsigned int numBytes,
int mode,
mem_stream32&s_in,
mem_stream32&s_out

definition
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The problem

Let’s examine the problem

Processor

1/0



The problem

First, there are various interconnects needed

Processor

1/0
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The problem

Control signals and logic must also be placed

Processor
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The problem

The app may have complex inputs, or need to interact with other logic

Processor
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Secure loading system

e A trustedsystem is booted with Secure Boot

* Included is a static module that reconfigures slots

* This module only allows sighed modules into slots that access
sensitive resources
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Our solution

e Builds off of prior research...

e ..butin a way that is compatible with vendor tools

* To do this, we leverage the deployment model for mobile apps

(o



