Apps with Hardware
Enabling Run-time Architectural
Customization in Smart Phones

Mobile Devices

Devices are designed around certain restrictions

This leads vendors to make tradeoffs

CN>D=X0ID

What if users and developers could choose?

(o

Vision: Smart Phone with an FPGA

Software-defined Radio

USRP N210

Ettus Research -t

MIMO EXPANSION ET AINE W DX
=" sigcomm12-picasso.pdf - Adobe Reader 5N
File Edit View Window Help £
Do | 2 E X Tools | Fill &Sign | Comment
B ~
1
Picasso: Flexible RF and Spectrum Slicing
Steven Hong Jeffrey Mehiman Sachin Katti
_Stanford University . Stanford University Stanford University
hsiying@stanford.edu jmehiman@stanford.edu skatti@stanford.edu
o
1
A) B) g
ABSTRACT ¥ ey
This paper presents the design, implementation and evaluation of Pi- a (.-D) i -
casso, a novel radio design that allows simultaneous transmission AN = . L
and reception on separate and arbitrary spectrum fragments using a Zggeein =~ I = ate P,
single RF front end and antenna. Picasso leverages this capability a\ - (7D ey '
flexibly partition fragmented spectrum into multiple slices that share '@' P;o’;p l@ a
the RF front end and antenna, yet operate concurrent and indepen- s e o, o l;
dent PHY/MAC protocols. We show how this capability provides a Oy a2 e o
general and clean abstraction to exploit fragmented spectrum in WiFi = “:‘;‘f,’;’fs
networks and handle coexistence in dense deployments. We proto- Frequency o Bands) Extended GSM Antenna
type Picasso, and demonstrate experimentally that a Pi 1: trum is common in ISM

High-performance Computing

Cryptography
Technology Throughput (GBytes/Sec)
E5503 Xeon Processor 0.01 (Single core)
AMD Radeon HD 7970 0.33
PCle385 FPGA Accelerator 5.20

http://www.nallatech.com/40gbit-aes-encryption-using-opencl-and-fpgas/

Analytics
Ryft ONE Primitive Analytics throughput of a Equivalent Spark cluster
single, fully-populated 1U size
Ryft ONE device (to match Ryft ONE performance)
Search ~10GB/sec > 100 nodes'
Fuzzy Search ~10GB/sec 100-200 nodes?
Term Frequency ~2.5GB/sec 100 nodes!

http://www.datanami.com/2015/03/10/fpga-system-smokes-spark-on-streaming-analytics/ @

Architectural Enhancements

Copilot Integrity Protection

X
'
becmccmmma

......

1 memory

CPU/
cache

bridge/

controller

i other kernel data
and process pages

4

Copilot

PCI local bus

)

//
I/I/E

(SEC 04)

("~ ™
‘ system call |
vector
modified

Admin Station

‘ ccurity Lab
-

. |

" 4 -

" 4 -

Somniloquy (NSDI 09)

- . Host PC
- Somnilogquy
Apps daemon
Operating system, including
networking stack
Host processor, Port filters fp pl?
RAM, peripherals, etc. stubs
| f Embedded OF, incl.
- ' networking stack
Secondary processol
i Embedded CPU,
Metwork interface hardware RAM, flash

Why is now the right time?

SoCs with Programmable Logic coupled with
ARM Cortex A9 (same as iPhone 4 and many other smartphones)

High-level Synthesis
Write C / C++ / SystemC / OpenCL code

- [Explares ’ ki hamming_window.opn §
#include “hamming window,h"

4 (=5 Namrning_window oe
3 Includes
—

of Mo . wction Tty pE
ic woid harrrnir.l__r"url_:.nit[m data 1 r'|:|r_.-1r'r~;':r'|];|;

£l hamming_window.cpp
i@ Test Bench f et definit
a 1 solusiont woidd h;mnlng_w;m;lmu{ml' data t |;||_|1:-'|-1|;.;|rJ[IJI_':I_':h'_I_E'J], in data 1
b COMs ; 2{
! directivestel static in_date t window coeff[WINDOW_LEN];
& scriptd unsignad i;
C5m

Fundamental Problem:

Sharing the FPGA between applications

What we can already do

App loads: software runs on processor, FPGA configured with hardware

AppX

Processor

10

What we can already do

App loads: software runs on processor, FPGA configured with hardware

This is currently possible — run-time reconfiguration
Sort of

Processor

11

What we can’t do

What if we have two apps?

AppY

AppY

Software

AppY

Hardware

k. Processor

What we can’t do

What if it’s a single chip (and some |/O goes through the FPGA)

AppY

AppY AppY
Software | | Hardware

1/0

k Processor

‘ /0

13

Why hasn’t this been solved before?

* Over a decade of research has proposed two main solutions:
— Run-time place-and-route
— Slot-based reconfiguration

14

Approach 1: Run-time Place/Route

* Thereis free space in the FPGA

* Place a new module there

15

Approach 1: Run-time Place/Route

e Routing can fail

* Routing is also very time consuming

 Therefore, is not practical

16

Approach 2: Slot-Based Reconfiguration

* |dentical empty regions are

reserved in FPGA

e Constrain tools to:

— Not use wires/logic inside of slots
— Use exact same wires for interface

17

Approach 2: Slot-Based Reconfiguration

e Hardware is loaded into slots

* Problem: if other logic exists,
wire routing becomes very
constrained

* Therefore, is also not practical

\
—

v

Slot

2

Slot
3

18

Previous Research

* Run-time Place and Route
— Is very computationally expensive

— Can possibly fail

* Slot-base Reconfiguration
— Constrained routing is very restrictive and not applicable generally

* Therefore, previous research is not practical

19

Introducing Cloud RTR

* Allows for sharing of the FPGA between general apps

e Uses existing vendor technologies
* Adoptsthe idea of slots from previous research

* Cloud RTR makes existing vendor technology work for general
apps

(o

20

The App Deployment Model

ANDROID APP ON

Google play

#_ Available on the
S App Store

21

Cloud RTR

/

a

\

Android
-
[FPGA] [ARM
_
\ Consumer

Cloud RTR

l
y

Static Design

Manufacturers

C defined

HW

Android
App

Developer

(o

Manufacturer

* Creates a static design
— All logic that does not change

* Design includes areas reserved
for slots

* Sends this to the cloud compiler

22

Static Design

23

Developer

* Create an app using existing tools

e Create a hardware definition in C

bool example(ap_uint<32> *in
ap_uint<32> *out,
bool *enabled,

C defined
HW

Android
App

App Store (Cloud Compiler)

* Compiles hardware for each app ApPp
— For each device variant
— For each slot in each variant _
[devicel:
[slotl: a.bit,
| slot2: b.bit,
. . I Cloud — slot3: c.bit]]
Static Design , :
—> Compiler [device 2:

I [slot1: d.bit,
h slot2: e.bit]]

25

User (Operating System)

* A system service
manages slots

* Downloaded apps include
slot hardware

* The system service loads
app hardware for apps

.apk:

[device 1:
[slotl: a.bit,
slot2: b.bit,
slot3: c.bit]]

26

Security Considerations

* The slot manager enforces access to hardware

* However, FPGAs can theoretically directly access sensitive
resources (while bypassing the OS)

* A secureloading system ensures that apps cannot access
sensitive resources

27

Secure loading system

How does the secure loader work?

Slot 1 Slot 2 ICAP

: I Signature Reconfiguration
Operating Syst
R Sy . Verification Module

28

Secure loading system

The OS wants to reconfigure Slot 1

Slot 1 Slot 2 ICAP

: Signature Reconfiguration

29

Secure loading system

The signature of the module is verified

Slot 1 ICAP

; l Signature Reconfiguration
Signed
module

30

Secure loading system

The module is written to the ICAP

Slot 1 Slot 2

Signed

l Sionat - T module
, ignature econfiguratic

31

Secure loading system

The ICAP performs the reconfiguration

: l Signature Reconfiguration

32

Evaluation

* |s there value in apps with hardware?

* |s the cloud-based compilation of Cloud RTR practical?

33

Micro benchmark 1: QAM demodulator

Execution time (s)
S o S 5 = S

[
o
EN

[
o
&0

]
Y . . .
;x‘& """" A = = Software Results [
f ¢ ¢ FPGA Results
]]]]]]
0 2000 4000 6000 8000 10000 12000

Number of Samples

14000

4 orders of
magnitude

(o

34

Micro benchmark 2: AES

10° ! !
S s N A
; 5 Ly T
— e T
0 TR . | ,
L PN 5 s z
v e s :
£ 107 ot R e S
— F ; RIS
+ an s)
+ ""'3:?"; NI S 0 o
g g RS . -
T 107 | T e g IICT e
O 5
qJ n % . ‘ | |
x [X ‘ ‘ . ‘
L % | - |+ + AOSP Implementation Results
10"‘§><-< ------------- e > X OpenSSL Results
; : | * * FPGA Results - Java Measured
¢ FPGA Results
1073 | ! ! ! ! !
0 2000 4000 6000 8000 10000 12000 14000

Number of 16-byte blocks

FPGA Is 3x
VS.
OpenSSL

(o

35

Micro benchmark 3: Memory Scanner

 We also implemented a hardware memory scanner

* |t can scan the entire address space transparently to the OS
— 2.7% memory read performance hit

— 5.5% memory write performance hit

* We tested this using the LMbench testbench

36

Brute-force compilation

Google Play Store Figures

of Apps as of Dec 14
Average Monthly App Growth

of Apps for January 16

provided by AppFigures.

1.43 Million

6.10%

117,521

Brute-force compilation

Max # of Apps Compiled 2 Slots Requirements
per day

Apps

of
Slots

2
3
4
5

6

37

121

96

76

59

51

of Device

Variants
1

10
100
1000

0.1 1
(3) (34)

of Machines Required to Compile

Apps

10

(347)

_ Reasonable for
==_ most scenarios

It

288
2875

(o

Brute-force compilation

Max # of Apps Compiled 6 Slots Requirements
per day

of Apps 0.1 1 10
Slots (3) (34) (347)
2 121 # of Device # of Machines Required to Compile
Variants Apps .
— BN T R
— o IR o

scenarios

: > 100 N -
° >t 1002 N - 6809

N (o

39

Reducing the numbers even more

 Compilation can be offloaded to manufacturers

 Manufacturers will likely reuse designs (Qualcomm, ARM chips
are often reused)

* Developers will likely use libraries

40

Implementation Case Study: Orbot

* Tor on Android

 AESis on the critical path

 Examine AES as an integration study

éd ol 0= Al 517
= Orbot

Download Upload
4kbps / 8KB 3kbps / 7KB

NOTICE: Bootstrapped 100%: Done

Check Browser
A i !

41

Implementation Case Study: Orbot

What we found:
* Memory operations are the bottleneck

— Data must be placed correctly in memory
— Userspace 1/0 has high overhead
— Many system calls are incompatible with UIO

* Itis easier to build an application from ground-up

é & ol
= Orbot

Download
4kbps / 8KB 3kbps / 7KB

NOTICE: Bootstrapped 100%: Done

Check Browser

42

Conclusion

 We have presentedour vision of apps with hardware

* Cloud RTR implements our vision by leveraging the mobile app
deployment model

 We have demonstrated the value and practicality of our vision

(o

43

Questions?

* Email: michael.coughlin@colorado.edu

* Source code: https://github.com/nsr-colorado/cloud-rtr

44

Vendor Supported Partial Reconfiguration

Goal: Space saving for customer

Target FPGA

Vendor tools

e base.bit
partial_1.bit
e partial_2.bit

u (Partial bitstreams work in 1 location,

and are just for base.bit)

Dynamic Module (s)

45

Examples of Libraries

* Crypto

— Asymmetric (RSA, ECDSA, etc...)

— Symmetric (3DES, Twofish, Blowfish)
e Soft processors

* Encoding

— Network encoding (Reed-Solmon, etc...)
— Media encoding (JPEG, MPEG, etc...)

* DSP
— FFTs, Filters, etc...

46

Example hardware definition

bool example(ap_uint<32> *in

ap_uint<32> *out,

bool *enabled,

47

More complicated hardware

typedefap_ uint<32>uint32_t hw;
typedef hls::stream<uint32_t _hw>mem_stream32;

bool aes(volatile unsignedint m_mm2s_ctl [500],
volatile unsigned int m_s2mm_ ct|[500],
volatile unsigned sourceAddress,
ap_uint<128> *key in,
ap_uint<128> *iy,
volatile unsigned destinationAddress,
unsigned int numBytes,
int mode,
mem_stream32&s_in,
mem_stream32&s_out

definition

48

The problem

Let’s examine the problem

Processor

1/0

The problem

First, there are various interconnects needed

Processor

1/0

50

The problem

Control signals and logic must also be placed

Processor

51

The problem

The app may have complex inputs, or need to interact with other logic

Processor

52

Secure loading system

e A trustedsystem is booted with Secure Boot

* Included is a static module that reconfigures slots

* This module only allows sighed modules into slots that access
sensitive resources

53

Our solution

e Builds off of prior research...

e ..butin a way that is compatible with vendor tools

* To do this, we leverage the deployment model for mobile apps

(o

