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Background

* Unlike magnetic HDDs, tlash SSDs erase
data in large blocks

e Limited number of erasures before errors
occur

... Want to make effective use of SSDs while being

cognizant of erasure penalty
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Flash Caching

_ Elzl — _ |:| Clients
« Using SSDs for an HDD cache '
— SSD cache as a tier btw. DRAM and HDD @

* Goal: to balance performance against endurance ﬁ ﬁ DRAM

— Nitro [USENIX ATC "14], CacheDedup , _ _ _ _ _ @ _________ .
[USENIX FAST "16] !

— RIPQ[USENIX FAST“15)  =-=--—= —@ —————————— |
— Pannier [ACM Middleware "15]

( () HDDs

* How do we know if we're doing well? s s w———
— Comparison against an offline optimal “best case”
— But what is the offline optimal for flash caches?
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Oftline Optimality

Belady’s MIN: A simple offline caching algorithm

when the next access is known
— Inserts a new ent?/ into the cache, removing the entry

that will be used furthest in the future
— Yields the optimal read hit ratio (RHR)

— 50 7
* MIN is not able to provide the Sl m&— o
optimal erasures in the context of §, | Ouralg M
tflash caching £
— MIN inserts data that won't actually § ™ L 3 4
o Norm. Erasures

be read
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Flash Cache Offline Optimality

* Objectives:
— O1: Minimize erasures s.t. maximal RHR

* Never insert items if it does not increase RHR
— O2: Maximize RHR s.t. an endurance limit
— (O3: Maximize combination of RHR and erasures

* True optimal

— How to compute the oftline optimal?
— What is the complexity?

uristics
— How can we approximatez

The focus of our work
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MIN

 Blocks

— Minimum unit of access
to the cache (e.g., 4KB)

* MIN priority queue end
(ranked based on next ref.
timestamp) 5

1. Don't insert blocks w/
furthest next ref.

ext ref timestamp: 200
> 128

48 128
Next estamp
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MIN

o BIOCkS Next ref timestamp: 18

— Minimum unit of access

to the cache (e.g., 4KB)
Head
—

* MIN priority queue
(ranked based on next ref.
48 128
estamp

timestamp)

1. Don't insert blocks w/
furthest next ref.

2. A new block is inserted
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Key Components
* MIN priority queue

— In-RAM structure tracking runtime
status at block granularity
* Containers
— Unit of insertion & eviction for flash
cache (e.g., 2MB)
* Write buffer
— Packs blocks into in-RAM write
buffer (e.g., 8MB)
« Container priority queue

— In-RAM structure tracking flash
containers
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Container-optimized Heuristic

lock B,: Eviction timestamp: 15
° |nsert 3 blOCk Block, Next ref timestamp: 10
— Into the Write buﬂ:er Earliest to die Latest to die

(sorted by eviction ‘:I

timestamp)
P Write buffer Container PQ

— Into the MIN queue
(sorted by next ref.
timestamp)
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Container-optimized Heuristic

B,: Eviction timestamp: 15

* Insert a block

— Into the write buffer
(sorted by eviction
timestamp)

— Into the MIN queue
(sorted by next ref.
timestamp)
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Earliest to die

10

Blockg

Bg:

Latest to die

Next ref timestamp: 10
Eviction timestamp: 25
Next ref timestamp: 6

Bg

Write buffer Container PQ

\!ext ref. furthest

RAM
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Container-optimized Heuristic

Into containers when it is
FULL Write buffer Contajner{PQ

 Write buffer is dispersed

e The containers are
written to the flash
cache RAM

Flash
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Container-optim

« Update block status on
invalidation or when MIN
would evict block as
furthest in future (“evict-
pending”)

— Remains in container until

that is GC'd

« Rank container queue by #
valid blocks

e FEvict the tail container to
make room for new data

« Copy forward valid blocks
to the write buffer

Next ref. nearest

WVirginiaTech E M’ -

ized Heuristic

Valid . Invalid . Evict-pending

&L

Most valid
blocks

Least valid

Container

é

Next ref. furthest

MIN PQ

Write buffer
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Optimizations

* R;: Only insert blocks read at least once
betore eviction

» TRIM: Skips dead blocks during GC

— Dead: overwritten or never reaccessed

« Copy-forwarding reduction: Eliminates
wasted CF blocks

» E: Segregates blocks by eviction timestamp
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Experimental Methodology

 Storage traces (34): limit to large enough datasets
— EMC VMAX: 25

— MSR Cambridge: 3
— MS Production Servers: 6

* Implementation
— Full-system flash cache simulator
— Vary cache size as function of unique data accessed in trace: 1-10%

e Metrics

— Performance: Read hit ratio (RHR)

— Endurance: Erasures per block per day (EPBPD)
— Function of RHR and EPBPD: Weighted flash usage effectiveness (WFUE)
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Comparing Algorithms

60

Read hit ratio (%)
= N w S ul
o o o o o

o

(O=0ffline, C=Container-optimized)

Description

|
Online Offline
2.5% cache size
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LRU Least recently used X X
RIPQ+  Static web content X X
Pannier Handles divergent containers X v
MIN Don't insert data w/ furthest nextref « X
MIN+  Don't insert data evicted w/o read /7
C Our container-optimized heuristic  /
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Comparing Algorithms

60 600 7
Lower is better!
? 50 . o 20
X C has significantly
2 40 fewer EPBPD w/
o identical RHR!
+ 30
=
T 20
Q
& 10
0

|
Online Offline
2.5% cache size
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Evaluating Heuristic Techniques

2.5% cache size

« R,;: Omit insertion 35

with no reread 30

« TRIM: Notify GCto 2> | N
omit dead blocks 2 20

(a8
: Q. 5 +
« CFR: Avoid wasted W
CF blocks 10 4
g -
« E: Segregate blocks
by evict timestamp 0 -

Base MIN  +R, +TRIM  +CFR  +E
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Evaluating Heuristic Techniques

10% cache size

* R;: Omit insertion /2 Lower is better!
with no reread c ‘mpooRmR
« TRIM: Notify GCto > TN [ v N
omitdeadblocks O, | NN —= 1 §,
a
(a]
) Q. 3 o - T - oo e oo
« CFR: Avoid wasted W 59
CF blocks 2 - ;<= . 23 B
1 | - - .
« E: Segregate blocks
by evict timestamp 0 - .
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Conclusion

* Important to have a baseline for the offline

optimal considering both RHR and endurance
07 Online
X
o

. .. .o = - M

* Our container-optimized heuristic 32.60- ’ ( )
maintains the optimal RHR while % -

40

reducing erasures by up to 67% . o 100
EPBPD (log-scale)
» Additional optimizations may be possible to

move this heuristic to the true optimal
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Erasing Belady’s Limitations:
In Search of Flash Cache Offline Optimality

Thank you! Q & A
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