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Background 
•  Unlike magnetic HDDs, flash SSDs erase 

data in large blocks  
•  Limited number of erasures before errors 

occur 

... Want to make effective use of SSDs while being 
cognizant of erasure penalty 
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Flash Caching 
•  Using SSDs for an HDD cache 

–  SSD cache as a tier btw. DRAM and HDD 
•  Goal: to balance performance against endurance 

–  Nitro [USENIX ATC ‘14], CacheDedup        
[USENIX FAST ‘16] 

–  RIPQ [USENIX FAST ‘15] 
–  Pannier [ACM Middleware ’15] 

•  How do we know if we’re doing well? 
–  Comparison against an offline optimal “best case”
–  But what is the offline optimal for flash caches? 
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Offline Optimality 
•  Belady’s MIN: A simple offline caching algorithm 

when the next access is known 
–  Inserts a new entry into the cache, removing the entry 

that will be used furthest in the future 
–  Yields the optimal read hit ratio (RHR) 

•  MIN is not able to provide the 
optimal erasures in the context of 
flash caching 
–  MIN inserts data that won’t actually 

be read
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Flash Cache Offline Optimality 
•  Objectives:  
–  O1: Minimize erasures s.t. maximal RHR 

•  Never insert items if it does not increase RHR 
–  O2: Maximize RHR s.t. an endurance limit 
–  O3: Maximize combination of RHR and erasures 

•  True optimal 
–  How to compute the offline optimal? 
–  What is the complexity? 

•  Heuristics 
–  How can we approximate? The focus of our work
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MIN 
•  Blocks
–  Minimum unit of access 

to the cache (e.g., 4KB) 

•  MIN priority queue 
(ranked based on next ref. 
timestamp) 
1.  Don’t insert blocks w/ 

furthest next ref. 

Block

Head	 Tail	

6	 48	 128	

Next	ref	Amestamp:	200	

200	>	128	
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MIN 
•  Blocks
–  Minimum unit of access 

to the cache (e.g., 4KB) 

•  MIN priority queue 
(ranked based on next ref. 
timestamp) 
1.  Don’t insert blocks w/ 

furthest next ref. 
2.  A new block is inserted 

Block

Head	 Tail	

Next	ref	Amestamp:	18	

6	 48	 128	
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Key Components 
•  MIN priority queue

–  In-RAM structure tracking runtime 
status at block granularity

•  Containers
–  Unit of insertion & eviction for flash 

cache (e.g., 2MB) 
•  Write buffer

–  Packs blocks into in-RAM write 
buffer (e.g., 8MB) 

•  Container priority queue
–  In-RAM structure tracking flash 

containers 

Block	

Block	

Block	

Block	

Block	

Block	

Container	

Container	PQ	

RAM	

Flash	

Write	buffer	

MIN	PQ	

8 



Container-optimized Heuristic 
•  Insert a block 
–  Into the write buffer 

(sorted by eviction 
timestamp) 

–  Into the MIN queue 
(sorted by next ref. 
timestamp) 

Container	PQ	

RAM	

Flash	

Write	buffer	

MIN	PQ	

BlockA
BA:	EvicAon	Amestamp:	15	
						Next	ref	Amestamp:	10	

Earliest	to	die	 Latest	to	die	

Next	ref.	nearest	 Next	ref.	furthest	
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Container-optimized Heuristic 
•  Insert a block 
–  Into the write buffer 

(sorted by eviction 
timestamp) 

–  Into the MIN queue 
(sorted by next ref. 
timestamp) 

Container	PQ	

RAM	

Flash	

Write	buffer	

MIN	PQ	

BlockB
BB:	EvicAon	Amestamp:	25	
						Next	ref	Amestamp:	6	

BA	 BB	

BA:	EvicAon	Amestamp:	15	
							Next	ref	Amestamp:	10	

BB	
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Earliest	to	die	 Latest	to	die	

Next	ref.	nearest	 Next	ref.	furthest	
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Container-optimized Heuristic 
•  Write buffer is dispersed 

into containers when it is 
FULL

•  The containers are 
written to the flash 
cache 
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Container-optimized Heuristic 
•  Update block status on 

invalidation or when MIN 
would evict block as 
furthest in future (“evict-
pending”)
–  Remains in container until 

that is GC’d 
•  Rank container queue by # 

valid blocks 
•  Evict the tail container to 

make room for new data 
•  Copy forward valid blocks 

to the write buffer 

Valid	 Invalid	 Evict-pending	

Most	valid	
blocks	

Least	valid	
blocks	

Container	

MIN	PQ	
...	Next	ref.	nearest	 Next	ref.	furthest	

Write	buffer	
12 

Container	PQ	



Optimizations 
•  R1: Only insert blocks read at least once 

before eviction
•  TRIM: Skips dead blocks during GC  
– Dead: overwritten or never reaccessed 

•  Copy-forwarding reduction: Eliminates 
wasted CF blocks 

•  E: Segregates blocks by eviction timestamp 
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Experimental Methodology 
•  Storage traces (34): limit to large enough datasets 

–  EMC VMAX: 25 
–  MSR Cambridge: 3 
–  MS Production Servers: 6 

•  Implementation 
–  Full-system flash cache simulator 
–  Vary cache size as function of unique data accessed in trace: 1-10% 

•  Metrics 
–  Performance: Read hit ratio (RHR) 
–  Endurance: Erasures per block per day (EPBPD) 
–  Function of RHR and EPBPD: Weighted flash usage effectiveness (WFUE) 

14 



Comparing Algorithms 

Policy Description O C

LRU Least recently used ✗ ✗ 

RIPQ+ Static web content ✗ ✗ 

Pannier Handles divergent containers ✗ ✓ 

MIN Don’t insert data w/ furthest next ref ✓ ✗ 

MIN+ Don’t insert data evicted w/o read ✓ ✓ 

C Our container-optimized heuristic ✓ ✓ 

(O=Offline,			C=Container-op*mized)	
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Comparing Algorithms 
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Evaluating Heuristic Techniques 
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•  R1: Omit insertion 
with no reread 

•  TRIM: Notify GC to 
omit dead blocks 

•  CFR: Avoid wasted 
CF blocks 

•  E: Segregate blocks 
by evict timestamp 
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Base	MIN	 +R1	 +TRIM	 +CFR	 +E	

•  R1: Omit insertion 
with no reread 

•  TRIM: Notify GC to 
omit dead blocks 

•  CFR: Avoid wasted 
CF blocks 

•  E: Segregate blocks 
by evict timestamp 

10% cache size
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Conclusion 

•  Our container-optimized heuristic 
maintains the optimal RHR while 
reducing erasures by up to 67%

•  Additional optimizations may be possible to 
move this heuristic to the true optimal 
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