
Erasing Belady’s Limitations:
In Search of Flash Cache Offline Optimality

Yue Cheng1,2 Fred Douglis2 Philip Shilane2 Michael Trachtman2

Grant Wallace2 Peter Desnoyers3 Kai Li4

1Virginia Tech 2EMC 3Northeastern University 4Princeton University

Background
•  Unlike magnetic HDDs, flash SSDs erase

data in large blocks
•  Limited number of erasures before errors

occur

... Want to make effective use of SSDs while being
cognizant of erasure penalty

2

Flash Caching
•  Using SSDs for an HDD cache

–  SSD cache as a tier btw. DRAM and HDD
•  Goal: to balance performance against endurance

–  Nitro [USENIX ATC ‘14], CacheDedup
[USENIX FAST ‘16]

–  RIPQ [USENIX FAST ‘15]
–  Pannier [ACM Middleware ’15]

•  How do we know if we’re doing well?
–  Comparison against an offline optimal “best case”
–  But what is the offline optimal for flash caches?

Clients	

DRAM	

Flash	cache	

HDDs	

3

Offline Optimality
•  Belady’s MIN: A simple offline caching algorithm

when the next access is known
–  Inserts a new entry into the cache, removing the entry

that will be used furthest in the future
–  Yields the optimal read hit ratio (RHR)

•  MIN is not able to provide the
optimal erasures in the context of
flash caching
–  MIN inserts data that won’t actually

be read

35	

40	

45	

50	

0	 1	 2	 3	 4	

Re
ad

	h
it	
ra
*o

	(%
)	

Norm.	Erasures	

MIN	Our	alg	

4

Flash Cache Offline Optimality
•  Objectives:
–  O1: Minimize erasures s.t. maximal RHR

•  Never insert items if it does not increase RHR
–  O2: Maximize RHR s.t. an endurance limit
–  O3: Maximize combination of RHR and erasures

•  True optimal
–  How to compute the offline optimal?
–  What is the complexity?

•  Heuristics
–  How can we approximate? The focus of our work

5

MIN
•  Blocks
–  Minimum unit of access

to the cache (e.g., 4KB)

•  MIN priority queue
(ranked based on next ref.
timestamp)
1.  Don’t insert blocks w/

furthest next ref.

Block

Head	 Tail	

6	 48	 128	

Next	ref	Amestamp:	200	

200	>	128	

6

Next ref timestamp

MIN
•  Blocks
–  Minimum unit of access

to the cache (e.g., 4KB)

•  MIN priority queue
(ranked based on next ref.
timestamp)
1.  Don’t insert blocks w/

furthest next ref.
2.  A new block is inserted

Block

Head	 Tail	

Next	ref	Amestamp:	18	

6	 48	 128	

7

Next ref timestamp

Key Components
•  MIN priority queue

–  In-RAM structure tracking runtime
status at block granularity

•  Containers
–  Unit of insertion & eviction for flash

cache (e.g., 2MB)
•  Write buffer

–  Packs blocks into in-RAM write
buffer (e.g., 8MB)

•  Container priority queue
–  In-RAM structure tracking flash

containers

Block	

Block	

Block	

Block	

Block	

Block	

Container	

Container	PQ	

RAM	

Flash	

Write	buffer	

MIN	PQ	

8

Container-optimized Heuristic
•  Insert a block
–  Into the write buffer

(sorted by eviction
timestamp)

–  Into the MIN queue
(sorted by next ref.
timestamp)

Container	PQ	

RAM	

Flash	

Write	buffer	

MIN	PQ	

BlockA
BA:	EvicAon	Amestamp:	15	
						Next	ref	Amestamp:	10	

Earliest	to	die	 Latest	to	die	

Next	ref.	nearest	 Next	ref.	furthest	

9

Container-optimized Heuristic
•  Insert a block
–  Into the write buffer

(sorted by eviction
timestamp)

–  Into the MIN queue
(sorted by next ref.
timestamp)

Container	PQ	

RAM	

Flash	

Write	buffer	

MIN	PQ	

BlockB
BB:	EvicAon	Amestamp:	25	
						Next	ref	Amestamp:	6	

BA	 BB	

BA:	EvicAon	Amestamp:	15	
							Next	ref	Amestamp:	10	

BB	

BA	

Earliest	to	die	 Latest	to	die	

Next	ref.	nearest	 Next	ref.	furthest	

10

Container-optimized Heuristic
•  Write buffer is dispersed

into containers when it is
FULL

•  The containers are
written to the flash
cache

Container	PQ	

RAM	

Flash	

Write	buffer	

11

Container-optimized Heuristic
•  Update block status on

invalidation or when MIN
would evict block as
furthest in future (“evict-
pending”)
–  Remains in container until

that is GC’d
•  Rank container queue by #

valid blocks
•  Evict the tail container to

make room for new data
•  Copy forward valid blocks

to the write buffer

Valid	 Invalid	 Evict-pending	

Most	valid	
blocks	

Least	valid	
blocks	

Container	

MIN	PQ	
...	Next	ref.	nearest	 Next	ref.	furthest	

Write	buffer	
12

Container	PQ	

Optimizations
•  R1: Only insert blocks read at least once

before eviction
•  TRIM: Skips dead blocks during GC
– Dead: overwritten or never reaccessed

•  Copy-forwarding reduction: Eliminates
wasted CF blocks

•  E: Segregates blocks by eviction timestamp

13

Experimental Methodology
•  Storage traces (34): limit to large enough datasets

–  EMC VMAX: 25
–  MSR Cambridge: 3
–  MS Production Servers: 6

•  Implementation
–  Full-system flash cache simulator
–  Vary cache size as function of unique data accessed in trace: 1-10%

•  Metrics
–  Performance: Read hit ratio (RHR)
–  Endurance: Erasures per block per day (EPBPD)
–  Function of RHR and EPBPD: Weighted flash usage effectiveness (WFUE)

14

Comparing Algorithms

Policy Description O C

LRU Least recently used ✗ ✗

RIPQ+ Static web content ✗ ✗

Pannier Handles divergent containers ✗ ✓

MIN Don’t insert data w/ furthest next ref ✓ ✗

MIN+ Don’t insert data evicted w/o read ✓ ✓

C Our container-optimized heuristic ✓ ✓

(O=Offline,			C=Container-op*mized)	

34.6	 37.7	
43.6	

53.6	 53.6	 53.6	

0	

10	

20	

30	

40	

50	

60	

Re
ad

	h
it	
ra
*o

	(%
)	

Online	 Offline	

All	3	offline	algorithms	achieve	the	same	(opAmal)	RHR	

2.5%	cache	size	

Higher	is	be\er!	

15

Comparing Algorithms

34.6	 37.7	
43.6	

53.6	 53.6	 53.6	

0	

10	

20	

30	

40	

50	

60	

Re
ad

	h
it	
ra
*o

	(%
)	

2.5%	cache	size	
Online	 Offline	

484	

181	 171	

30	 15	 10	
0	

100	

200	

300	

400	

500	

600	

EP
BP

D	
	

Online	 Offline	

Higher	is	be\er!	 Lower	is	be\er!	

16

C	has	significantly	
fewer	EPBPD	w/	
idenAcal	RHR!	

Evaluating Heuristic Techniques

30	

22	

15	
12	

10	

0	

5	

10	

15	

20	

25	

30	

35	

EP
BP

D	

Base	MIN	 +R1	 +TRIM	 +CFR	 +E	

•  R1: Omit insertion
with no reread

•  TRIM: Notify GC to
omit dead blocks

•  CFR: Avoid wasted
CF blocks

•  E: Segregate blocks
by evict timestamp

2.5%	cache	size	
Lower	is	be\er!	

27%	

32%	

20%	
17%	

17

67%	

6.3	
5.8	

3.0	 2.9	 2.8	

0	

1	

2	

3	

4	

5	

6	

7	

EP
BP

D	

Evaluating Heuristic Techniques

Base	MIN	 +R1	 +TRIM	 +CFR	 +E	

•  R1: Omit insertion
with no reread

•  TRIM: Notify GC to
omit dead blocks

•  CFR: Avoid wasted
CF blocks

•  E: Segregate blocks
by evict timestamp

10% cache size
Lower	is	be\er!	

+TRIM	

18

Conclusion

•  Our container-optimized heuristic
maintains the optimal RHR while
reducing erasures by up to 67%

•  Additional optimizations may be possible to
move this heuristic to the true optimal

40	

50	

60	

70	

1	 10	 100	

RH
R	
(%

)	

EPBPD	(log-scale)	

•  Important to have a baseline for the offline
optimal considering both RHR and endurance

C	
M	 Online	

19

Erasing Belady’s Limitations:
In Search of Flash Cache Offline Optimality

Thank you! Q & A
Acknowledgments:

Dan Arnon, Cheng Li, Stephen Manley, Darren Sawyer, Dan Tsafrir, Kevin Xu,
and Sanjeev Arora and his students from Princeton University

