
Testing Error Handling Code in Device Drivers Using
Characteristic Fault Injection

Jia-Ju Bai, Yu-Ping Wang, Jie Yin, Shi-Min Hu

Department of Computer Science and Technology

Tsinghua University

Beijing, China

1

DRIVER INTRODUCTION

Role

 Manage hardware devices

 Support high-level programs

 Run in kernel mode

Applications

Operating System

Hardware devices

Network
control

Process
management

……

Device drivers

2

DRIVER ERROR HANDLING

Occasional errors

 Kernel exceptions (-ENOMEM, -EFAULT, ……)

 Hardware malfunctions (-EIO, -EBUSY, ……)

 ……

Challenges for error handling

 Complex program logic and context

 Many different kinds of errors

 Infrequent to trigger

 ……

Error handling code in drivers is necessary but hard to
correctly implement

3

MOTIVATION

 Error handling code is incorrect in some drivers

 Memory is
allocated

Error handling
is triggered

Memory is NOT
freed!

4

MOTIVATION

Patch study

 Source: Patchwork (http://patchwork.ozlabs.org/)

 July 2015

 Findings

 40% of accepted patches are related to error handling code

 Many error handling patches are used to fix common bugs

Error handling code in current drivers is not reliable enough

5

http://patchwork.ozlabs.org/
http://patchwork.ozlabs.org/
http://patchwork.ozlabs.org/

GOAL

 Testing error handling code in device drivers

 Bug-detection capability

 Error-handling-code coverage

 Automation and efficiency

 Scalability and generality

6

BASIC TECHNIQUE

 Software fault injection (SFI)

 Good coverage for error handling code

 Exact runtime information for bug detection

 Support most drivers

Typical SFI System

Target Driver

Fault Injector

Fault Library

Workload Generator

Workload
Library

Runtime Monitor

Controller

Data
Analyzer

7

PREVIOUS SFI APPROACHES

 Some famous approaches

 Linux Fault Injection Capabilities Infrastructure

 ADFI (ISSTA ’15), KEDR (ICST ’11), LFI (DSN ’09), ……

 Limitations

 Low fault representativeness

 Numerous redundant test cases

 Several kinds of faults

 Much manual effort

Our solution is to introduce driver characteristics
into SFI

8

CHARACTERISTIC 1

 Function return value trigger

 The error handling code is often triggered by a bad
function return value

Driver study

 75% of “goto” statements are in if branches of bad
function return values

9

CHARACTERISTIC 2

 Few branches

 There are few if branches in error handling code

Driver study

 78% of error handling code is out of the if branches

 Reason: fail-stop model

10

CHARACTERISTIC 3

Check decision

 To check whether an occasional error occurs, an if
check is often used in the source code

 The checked data can be function return values (C1)
or common variables

11

CHARACTERISTIC USAGE

 Function return value trigger (C1)

 Injecting faults into function return values can cover
most error handling code

 Few branches (C2)

 Injecting single fault in each test case can cover most
error handling code

Check decision (C3)

 The function whose return value is checked in the
code should be fault-injected

12

EH-TEST

Architecture

 Fault extractor

 Fault injector

 Probe inserter

 Runtime monitor

 Pair checkers

 Two phases

 Test case generation

 Runtime testing

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

13

PHASE 1: TEST CASE GENERATION

 Task 1: Extracting target functions

 Input: OS + driver source code

 Output: target functions

 Method: pattern-based extraction strategy

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

14

PATTERN-BASED EXTRACTION

Based on C1 and C3

 Three code patterns

Automated and accurate extraction

Pattern 1:

Pattern 2:

Pattern 3:

Simple extraction:
(candidate functions)

Collect traces:

15

PHASE 1: TEST CASE GENERATION

 Task 2: Injecting faults into target functions

 Input: driver code + target functions

 Output: processed driver LLVM bytecode

 Method: single fault injection, code instrumentation

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

16

PHASE 1: TEST CASE GENERATION

 Task 3: Inserting probes for runtime monitoring

 Input: processed driver LLVM bytecode

 Output: driver test cases (loadable drivers)

 Method: code instrumentation

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

17

PHASE 2: RUNTIME TESTING

Runtime monitoring

 Record runtime information

 Maintain a resource-usage list

 Measuring code coverage

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

18

PHASE 2: RUNTIME TESTING

Bug reporting

 Driver crashes

 Driver hangs

 Resource-release omissions

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

19

EVALUATION

15 common Linux drivers (3.1.1 and 3.17.2)

 4 wireless drivers

 3 USB drivers

 8 Ethernet drivers

20

EVALUATION

 Target function extraction

 76% of candidate functions are filtered out

 10% false positive rate

 86% of target functions are called in initialization

21

EVALUATION

Bug detection

 32 real bugs in 3.1.1, 50 real bugs in 3.17.2

 9 bugs in 3.1.1 have been fixed in 3.17.2

 17 patches are sent, and 15 of them are applied

 Many resource-release omissions

22

EVALUATION

Code coverage

 Improve 8.8% in driver initialization

 Not all error handling code can be covered

23

ADFI VS EH-TEST

ADFI *ISSTA ’15+

 SFI testing for drivers

 Injecting faults into target function return values

 Detect crashes, hangs and memory leaks

Differences

 Target functions are manually selected

 Injecting multiple faults into each test case

Bug detection

 Find the same number of bugs in e100 and r8169

 10 bugs in ehci_hcd found by EH-Test are omitted

24

LIMITATIONS

 Some error handling code is uncovered

 Single fault injection

 Only injecting faults into function return values

Only default configuration is covered

25

CONCLUSION

Driver code study and 3 useful characteristics

Automated and accurate method: pattern-based
extraction strategy

 Efficient SFI approach: EH-Test

50 real bugs in 15 Linux drivers

 Future work: cover more error handling code
and configurations

26

Thanks!

Q & A

27

