
Testing Error Handling Code in Device Drivers Using
Characteristic Fault Injection

Jia-Ju Bai, Yu-Ping Wang, Jie Yin, Shi-Min Hu

Department of Computer Science and Technology

Tsinghua University

Beijing, China

1

DRIVER INTRODUCTION

Role

 Manage hardware devices

 Support high-level programs

 Run in kernel mode

Applications

Operating System

Hardware devices

Network
control

Process
management

……

Device drivers

2

DRIVER ERROR HANDLING

Occasional errors

 Kernel exceptions (-ENOMEM, -EFAULT, ……)

 Hardware malfunctions (-EIO, -EBUSY, ……)

 ……

Challenges for error handling

 Complex program logic and context

 Many different kinds of errors

 Infrequent to trigger

 ……

Error handling code in drivers is necessary but hard to
correctly implement

3

MOTIVATION

 Error handling code is incorrect in some drivers

 Memory is
allocated

Error handling
is triggered

Memory is NOT
freed!

4

MOTIVATION

Patch study

 Source: Patchwork (http://patchwork.ozlabs.org/)

 July 2015

 Findings

 40% of accepted patches are related to error handling code

 Many error handling patches are used to fix common bugs

Error handling code in current drivers is not reliable enough

5

http://patchwork.ozlabs.org/
http://patchwork.ozlabs.org/
http://patchwork.ozlabs.org/

GOAL

 Testing error handling code in device drivers

 Bug-detection capability

 Error-handling-code coverage

 Automation and efficiency

 Scalability and generality

6

BASIC TECHNIQUE

 Software fault injection (SFI)

 Good coverage for error handling code

 Exact runtime information for bug detection

 Support most drivers

Typical SFI System

Target Driver

Fault Injector

Fault Library

Workload Generator

Workload
Library

Runtime Monitor

Controller

Data
Analyzer

7

PREVIOUS SFI APPROACHES

 Some famous approaches

 Linux Fault Injection Capabilities Infrastructure

 ADFI (ISSTA ’15), KEDR (ICST ’11), LFI (DSN ’09), ……

 Limitations

 Low fault representativeness

 Numerous redundant test cases

 Several kinds of faults

 Much manual effort

Our solution is to introduce driver characteristics
into SFI

8

CHARACTERISTIC 1

 Function return value trigger

 The error handling code is often triggered by a bad
function return value

Driver study

 75% of “goto” statements are in if branches of bad
function return values

9

CHARACTERISTIC 2

 Few branches

 There are few if branches in error handling code

Driver study

 78% of error handling code is out of the if branches

 Reason: fail-stop model

10

CHARACTERISTIC 3

Check decision

 To check whether an occasional error occurs, an if
check is often used in the source code

 The checked data can be function return values (C1)
or common variables

11

CHARACTERISTIC USAGE

 Function return value trigger (C1)

 Injecting faults into function return values can cover
most error handling code

 Few branches (C2)

 Injecting single fault in each test case can cover most
error handling code

Check decision (C3)

 The function whose return value is checked in the
code should be fault-injected

12

EH-TEST

Architecture

 Fault extractor

 Fault injector

 Probe inserter

 Runtime monitor

 Pair checkers

 Two phases

 Test case generation

 Runtime testing

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

13

PHASE 1: TEST CASE GENERATION

 Task 1: Extracting target functions

 Input: OS + driver source code

 Output: target functions

 Method: pattern-based extraction strategy

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

14

PATTERN-BASED EXTRACTION

Based on C1 and C3

 Three code patterns

Automated and accurate extraction

Pattern 1:

Pattern 2:

Pattern 3:

Simple extraction:
(candidate functions)

Collect traces:

15

PHASE 1: TEST CASE GENERATION

 Task 2: Injecting faults into target functions

 Input: driver code + target functions

 Output: processed driver LLVM bytecode

 Method: single fault injection, code instrumentation

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

16

PHASE 1: TEST CASE GENERATION

 Task 3: Inserting probes for runtime monitoring

 Input: processed driver LLVM bytecode

 Output: driver test cases (loadable drivers)

 Method: code instrumentation

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

17

PHASE 2: RUNTIME TESTING

Runtime monitoring

 Record runtime information

 Maintain a resource-usage list

 Measuring code coverage

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

18

PHASE 2: RUNTIME TESTING

Bug reporting

 Driver crashes

 Driver hangs

 Resource-release omissions

EH-Test
Fault

Extractor

Target
Functions

 OS source code

 + +
Target
Driver

Other
Drivers

Interface
Functions

Fault
Injector

Test Cases

Probe
Inserter

Runtime
Monitor

Pair Checkers

Bug Reports

19

EVALUATION

15 common Linux drivers (3.1.1 and 3.17.2)

 4 wireless drivers

 3 USB drivers

 8 Ethernet drivers

20

EVALUATION

 Target function extraction

 76% of candidate functions are filtered out

 10% false positive rate

 86% of target functions are called in initialization

21

EVALUATION

Bug detection

 32 real bugs in 3.1.1, 50 real bugs in 3.17.2

 9 bugs in 3.1.1 have been fixed in 3.17.2

 17 patches are sent, and 15 of them are applied

 Many resource-release omissions

22

EVALUATION

Code coverage

 Improve 8.8% in driver initialization

 Not all error handling code can be covered

23

ADFI VS EH-TEST

ADFI *ISSTA ’15+

 SFI testing for drivers

 Injecting faults into target function return values

 Detect crashes, hangs and memory leaks

Differences

 Target functions are manually selected

 Injecting multiple faults into each test case

Bug detection

 Find the same number of bugs in e100 and r8169

 10 bugs in ehci_hcd found by EH-Test are omitted

24

LIMITATIONS

 Some error handling code is uncovered

 Single fault injection

 Only injecting faults into function return values

Only default configuration is covered

25

CONCLUSION

Driver code study and 3 useful characteristics

Automated and accurate method: pattern-based
extraction strategy

 Efficient SFI approach: EH-Test

50 real bugs in 15 Linux drivers

 Future work: cover more error handling code
and configurations

26

Thanks!

Q & A

27

