
FLICK: Developing and Running
Application-Specific Network

Services

Presenter: Richard G. Clegg, Imperial College
Imperial College: Abdul Alim, Luo Mai, Lukas Rupprecht, Eric Seckler, Paolo Costa,
Peter Pietzuch, Alexander L. Wolf
Cambridge: Nik Sultana, Jon Crowcroft, Anil Madhavapeddy, Andrew W. Moore,
Richard Mortier
Nottingham: Masoud Koleini, Carlos Oviedo, Derek McAuley
Kent: Matteo Migliavacca

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 0 / 23



Packet processing vs application-specific middlebox

Client

Server1

Server2

Server3

Packet processing
(ECMP loadbalancer)

process(packet):

dest=hash(packet.srcIP + packet

.srcport)

forward(packet ,dest);

Header data only used.

Packets have fixed format.

Basic data unit is packet.

Application-specific
(memcached router)

process(key_val_pair):

dest=hash(key_val_pair.key);

forward(key_val_pair ,dest);

Applications have different data
formats (e.g. key-value pairs,
HTTP request/reply).

TCP flow not packets.

One packet != one data item.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 1 / 23



Packet processing vs application-specific middlebox

Client

Server1

Server2

Server3

Packet processing
(ECMP loadbalancer)

process(packet):

dest=hash(packet.srcIP + packet

.srcport)

forward(packet ,dest);

Header data only used.

Packets have fixed format.

Basic data unit is packet.

Application-specific
(memcached router)

process(key_val_pair):

dest=hash(key_val_pair.key);

forward(key_val_pair ,dest);

Applications have different data
formats (e.g. key-value pairs,
HTTP request/reply).

TCP flow not packets.

One packet != one data item.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 1 / 23



Packet processing vs application-specific middlebox

Client

Server1

Server2

Server3

Packet processing
(ECMP loadbalancer)

process(packet):

dest=hash(packet.srcIP + packet

.srcport)

forward(packet ,dest);

Header data only used.

Packets have fixed format.

Basic data unit is packet.

Application-specific
(memcached router)

process(key_val_pair):

dest=hash(key_val_pair.key);

forward(key_val_pair ,dest);

Applications have different data
formats (e.g. key-value pairs,
HTTP request/reply).

TCP flow not packets.

One packet != one data item.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 1 / 23



Packet processing vs application-specific middlebox

Client

Server1

Server2

Server3

Packet processing
(ECMP loadbalancer)

process(packet):

dest=hash(packet.srcIP + packet

.srcport)

forward(packet ,dest);

Header data only used.

Packets have fixed format.

Basic data unit is packet.

Application-specific
(memcached router)

process(key_val_pair):

dest=hash(key_val_pair.key);

forward(key_val_pair ,dest);

Applications have different data
formats (e.g. key-value pairs,
HTTP request/reply).

TCP flow not packets.

One packet != one data item.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 1 / 23



Packet processing vs application-specific middlebox

Client

Server1

Server2

Server3

Packet processing
(ECMP loadbalancer)

process(packet):

dest=hash(packet.srcIP + packet

.srcport)

forward(packet ,dest);

Header data only used.

Packets have fixed format.

Basic data unit is packet.

Application-specific
(memcached router)

process(key_val_pair):

dest=hash(key_val_pair.key);

forward(key_val_pair ,dest);

Applications have different data
formats (e.g. key-value pairs,
HTTP request/reply).

TCP flow not packets.

One packet != one data item.
Richard G. Clegg FLICK: Application-specific network services USENIX ATC 1 / 23



Problem: The application-specific middlebox

Figures from: Making Middleboxes Someone Elses Problem, Sherry et al. SIGCOMM 2012

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 2 / 23



Problem: The application-specific middlebox

Application specific middleboxes

Figures from: Making Middleboxes Someone Elses Problem, Sherry et al. SIGCOMM 2012

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 2 / 23



Problem: The application-specific middlebox

Application specific middleboxes

NetAgg: Using Middleboxes
for On-path Aggregation
CoNEXT 2014

Figures from: Making Middleboxes Someone Elses Problem, Sherry et al. SIGCOMM 2012

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 2 / 23



Problem: The application-specific middlebox

Application specific middleboxes

NetAgg: Using Middleboxes
for On-path Aggregation
CoNEXT 2014

BlindBox: Deep Packet Inspec-
tion over Encrypted Traffic
SIGCOMM 2015

Figures from: Making Middleboxes Someone Elses Problem, Sherry et al. SIGCOMM 2012

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 2 / 23



Problem: The application-specific middlebox

Application specific middleboxes

NetAgg: Using Middleboxes
for On-path Aggregation
CoNEXT 2014

BlindBox: Deep Packet Inspec-
tion over Encrypted Traffic
SIGCOMM 2015

Yoda: A Highly Available
Layer-7 Load Balancer
EuroSys 2016

Figures from: Making Middleboxes Someone Elses Problem, Sherry et al. SIGCOMM 2012

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 2 / 23



Problem: The application-specific middlebox

Application specific middleboxes

NetAgg: Using Middleboxes
for On-path Aggregation
CoNEXT 2014

BlindBox: Deep Packet Inspec-
tion over Encrypted Traffic
SIGCOMM 2015

Yoda: A Highly Available
Layer-7 Load Balancer
EuroSys 2016

Introducing mcrouter:
A memcached protocol router
Facebook blog

Figures from: Making Middleboxes Someone Elses Problem, Sherry et al. SIGCOMM 2012

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 2 / 23



Creating new application-specific middlebox

Ease of implementation

E
xp

re
ss

iv
en

es
s

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 3 / 23



Creating new application-specific middlebox

Ease of implementation

E
xp

re
ss

iv
en

es
s

C/C++ code
from scratch

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 3 / 23



Creating new application-specific middlebox

Ease of implementation

E
xp

re
ss

iv
en

es
s

C/C++ code
from scratch

ClickOS
existing modules

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 3 / 23



Creating new application-specific middlebox

Ease of implementation

E
xp

re
ss

iv
en

es
s

C/C++ code
from scratch

ClickOS
existing modules

ClickOS
new modules

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 3 / 23



Creating new application-specific middlebox

Ease of implementation

E
xp

re
ss

iv
en

es
s

C/C++ code
from scratch

ClickOS
existing modules

ClickOS
new modules Software

Defined Networking

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 3 / 23



FLICK for the datacentre

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 4 / 23



FLICK for the datacentre

mcrouter mcrouterspam filter

IP firewallWAN opt

HTTP
loadbalancer

HTTP
loadbalancer

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 4 / 23



FLICK for the datacentre

IP firewall

FLICK

FLICK

FLICK FLICK

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 4 / 23



General system for application-specific middleboxes?

Challenge 1: Ease-of-use

Rapidly express many middlebox functions.
System created in hours not weeks/months.

Challenge 2: Performance

Generality must not have large performance penalty.
Performance similar to specially written system.

Challenge 3: Safety/Isolation

Middleboxes should be “safe” in resource usage.
Applications on same machine share resources well.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 5 / 23



General system for application-specific middleboxes?

Challenge 1: Ease-of-use

Rapidly express many middlebox functions.
System created in hours not weeks/months.

Challenge 2: Performance

Generality must not have large performance penalty.
Performance similar to specially written system.

Challenge 3: Safety/Isolation

Middleboxes should be “safe” in resource usage.
Applications on same machine share resources well.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 5 / 23



General system for application-specific middleboxes?

Challenge 1: Ease-of-use

Rapidly express many middlebox functions.
System created in hours not weeks/months.

Challenge 2: Performance

Generality must not have large performance penalty.
Performance similar to specially written system.

Challenge 3: Safety/Isolation

Middleboxes should be “safe” in resource usage.
Applications on same machine share resources well.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 5 / 23



FLICK overview

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 6 / 23

Flick programs

Domain specific language (DSL) for application-specific middleboxes.
Tens of lines of code not tens of thousands



FLICK overview

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 6 / 23

Flick task graphs

Break work into independently schedulable units (tasks).
Join tasks by channels into task graphs.



FLICK overview

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 6 / 23

Flick platform

The running implementation. Integrates the compiled C++ from DSL.
Handles network connections, worker threads and scheduling tasks.



FLICK – the language

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 7 / 23



FLICK (language) – features

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Process as basic unit of code expresses flow of typed data.

Control structures restricted. Bounded loops and hence execution
time.

Strongly typed for safety.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 8 / 23



FLICK (language) – features

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Process as basic unit of code expresses flow of typed data.

Control structures restricted. Bounded loops and hence execution
time.

Strongly typed for safety.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 8 / 23



FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23



FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Structure allows work to
break into smaller task units

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23



FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Structure allows work to
break into smaller task units

Convenient abstractions for middlebox

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23



FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Type definition
only necessary
fields included

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23



FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Process: entry point
defines how

channels connect

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23



FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Function
selects backend

using key

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23



FLICK (language) – parsing data (memcached)

type cmd = unit {

%byteorder = big;

magic_code : uint8;

opcode : uint8;

key_len : uint16;

extras_len : uint8;

: uint8; # anon field - future use

status_or_v_bucket : uint16;

total_len : uint32;

opaque : uint32;

cas : uint64;

extras : bytes &length = self.extras_len;

key : string &length = self.key_len;

value : bytes &length = self.value_len;

};

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 10 / 23



FLICK (language) – parsing data (memcached)

type cmd = unit {

%byteorder = big;

magic_code : uint8;

opcode : uint8;

key_len : uint16;

extras_len : uint8;

: uint8; # anon field - future use

status_or_v_bucket : uint16;

total_len : uint32;

opaque : uint32;

cas : uint64;

extras : bytes &length = self.extras_len;

key : string &length = self.key_len;

value : bytes &length = self.value_len;

};

Based on Spicy/binpac++ [IMC2006]

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 10 / 23



FLICK (language) – parsing data (memcached)

type cmd = unit {

%byteorder = big;

magic_code : uint8;

opcode : uint8;

key_len : uint16;

extras_len : uint8;

: uint8; # anon field - future use

status_or_v_bucket : uint16;

total_len : uint32;

opaque : uint32;

cas : uint64;

extras : bytes &length = self.extras_len;

key : string &length = self.key_len;

value : bytes &length = self.value_len;

};

Based on Spicy/binpac++ [IMC2006]

Developer can quickly parse even
complex formats like HTTP

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 10 / 23



FLICK (language) – parsing data (memcached)

type cmd = unit {

%byteorder = big;

magic_code : uint8;

opcode : uint8;

key_len : uint16;

extras_len : uint8;

: uint8; # anon field - future use

status_or_v_bucket : uint16;

total_len : uint32;

opaque : uint32;

cas : uint64;

extras : bytes &length = self.extras_len;

key : string &length = self.key_len;

value : bytes &length = self.value_len;

};

Based on Spicy/binpac++ [IMC2006]

Developer can quickly parse even
complex formats like HTTP

Compiles to efficient C++. Only
extracts fields used in processing

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 10 / 23



FLICK (language) – parsing data (memcached)

type cmd = unit {

%byteorder = big;

magic_code : uint8;

opcode : uint8;

key_len : uint16;

extras_len : uint8;

: uint8; # anon field - future use

status_or_v_bucket : uint16;

total_len : uint32;

opaque : uint32;

cas : uint64;

extras : bytes &length = self.extras_len;

key : string &length = self.key_len;

value : bytes &length = self.value_len;

};

Fixed width field
easy to define

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 10 / 23



FLICK (language) – parsing data (memcached)

type cmd = unit {

%byteorder = big;

magic_code : uint8;

opcode : uint8;

key_len : uint16;

extras_len : uint8;

: uint8; # anon field - future use

status_or_v_bucket : uint16;

total_len : uint32;

opaque : uint32;

cas : uint64;

extras : bytes &length = self.extras_len;

key : string &length = self.key_len;

value : bytes &length = self.value_len;

};

Field length
depends on

previous field

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 10 / 23



FLICK – the task graph

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 11 / 23



FLICK – the task graph

Client

Server 1

Server 2

Separate input, processing and
output tasks enable parallelism

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 12 / 23



FLICK – the task graph

Client

Server 1

Server 2

Input TCP
flow

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 12 / 23



FLICK – the task graph

Client

Server 1

Server 2

Input task
deserialises data

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 12 / 23



FLICK – the task graph

Client

Server 1

Server 2

Processing task
forwards by key

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 12 / 23



FLICK – the task graph

Client

Server 1

Server 2

Output task
serialises data

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 12 / 23



FLICK – the task graph

Client

Server 1

Server 2

Server
sends reply

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 12 / 23



FLICK – the task graph

Client

Server 1

Server 2

Input task
deserialises data

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 12 / 23



FLICK – the task graph

For memcached router each client has its own task graph.

Different types of task graph – some have data parallelism.
Data and task parallelism.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 13 / 23



FLICK – the task graph

For memcached router each client has its own task graph.
Different types of task graph – some have data parallelism.
Data and task parallelism.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 13 / 23



FLICK – the platform

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 14 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 15 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Efficiently handle the TCP
connection set up and tear down

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 15 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Efficiently handle the TCP
connection set up and tear down

Manage memory allocation smartly
(reduce dynamic allocation)

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 15 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Efficiently handle the TCP
connection set up and tear down

Manage memory allocation smartly
(reduce dynamic allocation)

Schedule tasks fairly between
applications (safety/isolation)

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 15 / 23



FLICK – the platform

Application Dispatcher

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

New TCP
connection

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

DPDK/mTCP (userland TCP)
reduce kernel calls

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Choose application
to connect to

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

Connect to
existing graph

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

New graph
from pool

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Tasks with data
added to queue

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Workers pick
tasks from queue

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Tasks have limited
time on a thread

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



Evaluation – latency/throughput (loadbalancer)

Client

Server 1

Server 2

Clients send HTTP requests up to ten backends.

Persistent TCP connections to/from loadbalancer.

Vary number of clients measure latency and throughput.

DPDK/mTCP used to reduce kernel calls in connections.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 17 / 23



Evaluation – latency/throughput (loadbalancer)

Client

Server 1

Server 2

Clients send HTTP requests up to ten backends.

Persistent TCP connections to/from loadbalancer.

Vary number of clients measure latency and throughput.

DPDK/mTCP used to reduce kernel calls in connections.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 17 / 23



Evaluation – latency (loadbalancer)

0

10

20

100 200 400 800 1600
Concurrent clients

M
ea

n 
la

te
nc

y 
(m

s)

Lower 
is better

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 18 / 23



Evaluation – latency (loadbalancer)

0

10

20

100 200 400 800 1600
Concurrent clients

M
ea

n 
la

te
nc

y 
(m

s)

FLICK
Apache
Nginx

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 18 / 23



Evaluation – latency (loadbalancer)

0

10

20

100 200 400 800 1600
Concurrent clients

M
ea

n 
la

te
nc

y 
(m

s) FLICK mTCP
FLICK
Apache
Nginx

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 18 / 23



Evaluation – throughput (loadbalancer)

100

200

300

100 200 400 800 1600
Concurrent clients

Th
ou

sa
nd

 re
qs

/s Higher
is better

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 19 / 23



Evaluation – throughput (loadbalancer)

100

200

300

100 200 400 800 1600
Concurrent clients

Th
ou

sa
nd

 re
qs

/s

FLICK Apache Nginx

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 19 / 23



Evaluation – throughput (loadbalancer)

100

200

300

100 200 400 800 1600
Concurrent clients

Th
ou

sa
nd

 re
qs

/s

FLICK mTCP FLICK Apache Nginx

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 19 / 23



Evaluation – scalability with cores

This middlebox merges data in big data systems.

Binary merge tree takes advantage of data parallelism.

See “NetAgg: Using Middleboxes for Application-specific On-path
Aggregation in Data Centres” [CoNext 2014].

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 20 / 23



Evaluation – scalability with cores

This middlebox merges data in big data systems.

Binary merge tree takes advantage of data parallelism.

See “NetAgg: Using Middleboxes for Application-specific On-path
Aggregation in Data Centres” [CoNext 2014].

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 20 / 23



Evaluation – scalability with cores

Test scaling. Measure throughput as number of cores increases.

Three data sets each one billion words. 8, 12 and 16 character words.

Merge eight streams – measure throughput of output stream.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 21 / 23



Evaluation – scalability with cores

Test scaling. Measure throughput as number of cores increases.

Three data sets each one billion words. 8, 12 and 16 character words.

Merge eight streams – measure throughput of output stream.

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 21 / 23



Evaluation – scalability with cores

Maximum throughput

0

2000

4000

6000

8000

1 2 4 8 16
CPU cores

Th
ro

ug
hp

ut
 M

b/
s

Higher
is better

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 22 / 23



Evaluation – scalability with cores

Maximum throughput

0

2000

4000

6000

8000

1 2 4 8 16
CPU cores

Th
ro

ug
hp

ut
 M

b/
s

16 char words

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 22 / 23



Evaluation – scalability with cores

Maximum throughput

0

2000

4000

6000

8000

1 2 4 8 16
CPU cores

Th
ro

ug
hp

ut
 M

b/
s

8 char words
12 char words
16 char words

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 22 / 23



Conclusions

Application-specific services

Application-specific middleboxes are here to stay.

Packet processing systems not suitable for these.

The FLICK system

FLICK domain-specific language – “safe by design”.

Task graph abstraction gives task and data parallelism.

Performance of FLICK comparable to specialist system.

Thank you – questions?
Richard G. Clegg

richard.clegg@imperial.ac.uk

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 23 / 23



Conclusions

Application-specific services

Application-specific middleboxes are here to stay.

Packet processing systems not suitable for these.

The FLICK system

FLICK domain-specific language – “safe by design”.

Task graph abstraction gives task and data parallelism.

Performance of FLICK comparable to specialist system.

Thank you – questions?
Richard G. Clegg

richard.clegg@imperial.ac.uk

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 23 / 23



Conclusions

Application-specific services

Application-specific middleboxes are here to stay.

Packet processing systems not suitable for these.

The FLICK system

FLICK domain-specific language – “safe by design”.

Task graph abstraction gives task and data parallelism.

Performance of FLICK comparable to specialist system.

Thank you – questions?
Richard G. Clegg

richard.clegg@imperial.ac.uk

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 23 / 23



Performance – memcached example

●

●

●
●

●

0

1

2

3

4

1 2 4 8 16
CPU cores

M
ea

n 
la

te
nc

y 
(m

s)

● FLICK
FLICK mTCP
Moxi

Comparison with Moxi (also supports multi-core + binary protocol).

Set up 128 clients making multiple requests.

Latency reduction shown.

FLICK throughput with mTCP 198,000 reqs/sec.

Moxi throughput 82,000 reqs/sec

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 1 / 1


	Introduction
	FLICK
	Results
	Conclusions
	Appendix

