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Packet processing vs application-specific middlebox

Client

Server1

Server2

Server3

Packet processing
(ECMP loadbalancer)

process(packet):

dest=hash(packet.srcIP + packet

.srcport)

forward(packet ,dest);

Header data only used.

Packets have fixed format.

Basic data unit is packet.

Application-specific
(memcached router)

process(key_val_pair):

dest=hash(key_val_pair.key);

forward(key_val_pair ,dest);

Applications have different data
formats (e.g. key-value pairs,
HTTP request/reply).

TCP flow not packets.

One packet != one data item.
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Problem: The application-specific middlebox

Figures from: Making Middleboxes Someone Elses Problem, Sherry et al. SIGCOMM 2012
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Application specific middleboxes

NetAgg: Using Middleboxes
for On-path Aggregation
CoNEXT 2014

BlindBox: Deep Packet Inspec-
tion over Encrypted Traffic
SIGCOMM 2015

Yoda: A Highly Available
Layer-7 Load Balancer
EuroSys 2016

Introducing mcrouter:
A memcached protocol router
Facebook blog

Figures from: Making Middleboxes Someone Elses Problem, Sherry et al. SIGCOMM 2012
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Creating new application-specific middlebox

Ease of implementation
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Creating new application-specific middlebox
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FLICK for the datacentre
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FLICK for the datacentre

mcrouter mcrouterspam filter

IP firewallWAN opt

HTTP
loadbalancer

HTTP
loadbalancer
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General system for application-specific middleboxes?

Challenge 1: Ease-of-use

Rapidly express many middlebox functions.
System created in hours not weeks/months.

Challenge 2: Performance

Generality must not have large performance penalty.
Performance similar to specially written system.

Challenge 3: Safety/Isolation

Middleboxes should be “safe” in resource usage.
Applications on same machine share resources well.
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FLICK overview
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Flick programs

Domain specific language (DSL) for application-specific middleboxes.
Tens of lines of code not tens of thousands
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Flick task graphs

Break work into independently schedulable units (tasks).
Join tasks by channels into task graphs.



FLICK overview
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Flick platform

The running implementation. Integrates the compiled C++ from DSL.
Handles network connections, worker threads and scheduling tasks.



FLICK – the language
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FLICK (language) – features

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Process as basic unit of code expresses flow of typed data.

Control structures restricted. Bounded loops and hence execution
time.

Strongly typed for safety.
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FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23



FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Structure allows work to
break into smaller task units

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23



FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()

let target = hash(req.key) mod len(backends)

req => backends[target]

Structure allows work to
break into smaller task units

Convenient abstractions for middlebox

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 9 / 23
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Client

Server 1

Server 2

type cmd: record

key : string
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Type definition
only necessary
fields included
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Process: entry point
defines how

channels connect
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FLICK (language) – processing data (memcached)

Client

Server 1

Server 2

type cmd: record

key : string

proc Memcached: (cmd/cmd client , [cmd/cmd] backends)

| backends => client

| client => target_backend(backends)

fun target_backend: ([-/cmd] backends , req:cmd) -> ()
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Function
selects backend

using key
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FLICK (language) – parsing data (memcached)

type cmd = unit {

%byteorder = big;

magic_code : uint8;

opcode : uint8;

key_len : uint16;

extras_len : uint8;

: uint8; # anon field - future use

status_or_v_bucket : uint16;

total_len : uint32;

opaque : uint32;

cas : uint64;

extras : bytes &length = self.extras_len;

key : string &length = self.key_len;

value : bytes &length = self.value_len;

};
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Based on Spicy/binpac++ [IMC2006]

Developer can quickly parse even
complex formats like HTTP

Compiles to efficient C++. Only
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Field length
depends on

previous field
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FLICK – the task graph
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FLICK – the task graph

Client

Server 1

Server 2

Separate input, processing and
output tasks enable parallelism
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FLICK – the task graph

Client

Server 1

Server 2

Processing task
forwards by key
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FLICK – the task graph

Client

Server 1

Server 2

Output task
serialises data
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FLICK – the task graph

Client

Server 1

Server 2

Server
sends reply
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FLICK – the task graph

For memcached router each client has its own task graph.

Different types of task graph – some have data parallelism.
Data and task parallelism.
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FLICK – the platform
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FLICK – the platform

Application Dispatcher

Graph Dispatcher
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Existing
graph
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Work Threads
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Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Efficiently handle the TCP
connection set up and tear down

Manage memory allocation smartly
(reduce dynamic allocation)

Schedule tasks fairly between
applications (safety/isolation)
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FLICK – the platform
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FLICK – the platform

Application Dispatcher

New TCP
connection
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FLICK – the platform

Application Dispatcher

DPDK/mTCP (userland TCP)
reduce kernel calls

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 16 / 23



FLICK – the platform

Application Dispatcher

Choose application
to connect to
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FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
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Scheduler
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FLICK – the platform

Application Dispatcher
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Graph pool

Existing
graph
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Scheduler
Task Queue
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FLICK – the platform

Application Dispatcher

Graph Dispatcher
Graph pool

Existing
graph

New
graph

Scheduler
Task Queue

Work Threads

Tasks have limited
time on a thread
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Evaluation – latency/throughput (loadbalancer)

Client

Server 1

Server 2

Clients send HTTP requests up to ten backends.

Persistent TCP connections to/from loadbalancer.

Vary number of clients measure latency and throughput.

DPDK/mTCP used to reduce kernel calls in connections.
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Evaluation – latency (loadbalancer)
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Evaluation – throughput (loadbalancer)
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Evaluation – scalability with cores

This middlebox merges data in big data systems.

Binary merge tree takes advantage of data parallelism.

See “NetAgg: Using Middleboxes for Application-specific On-path
Aggregation in Data Centres” [CoNext 2014].

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 20 / 23



Evaluation – scalability with cores

This middlebox merges data in big data systems.

Binary merge tree takes advantage of data parallelism.

See “NetAgg: Using Middleboxes for Application-specific On-path
Aggregation in Data Centres” [CoNext 2014].

Richard G. Clegg FLICK: Application-specific network services USENIX ATC 20 / 23



Evaluation – scalability with cores

Test scaling. Measure throughput as number of cores increases.

Three data sets each one billion words. 8, 12 and 16 character words.

Merge eight streams – measure throughput of output stream.
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Evaluation – scalability with cores
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Evaluation – scalability with cores
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Conclusions

Application-specific services

Application-specific middleboxes are here to stay.

Packet processing systems not suitable for these.

The FLICK system

FLICK domain-specific language – “safe by design”.

Task graph abstraction gives task and data parallelism.

Performance of FLICK comparable to specialist system.

Thank you – questions?
Richard G. Clegg

richard.clegg@imperial.ac.uk
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Performance – memcached example
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Comparison with Moxi (also supports multi-core + binary protocol).

Set up 128 clients making multiple requests.

Latency reduction shown.

FLICK throughput with mTCP 198,000 reqs/sec.

Moxi throughput 82,000 reqs/sec
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