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Outline
• Background and Motivation
• ParaFS Design
• Evaluation
• Conclusion
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Solid State Drives – Internal Parallelism
• Internal Parallelism

– Channel Level, Chip Level, Die Level, Plane Level
– Chips in one package share the same 8/16-bit-I/O bus, but have 

separated chip enable (CE) and ready/busy (R/B) control signals.
– Each die has one internal R/B signal.
– Each plane contains thousands of flash blocks and one data register.
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Flash File Systems
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• Log-structured File System
– Duplicate Functions: Space Allocation, Garbage Collection.
– Semantic Isolation: FTL Abstraction, Block I/O Interface, Log on Log.
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Observation
• F2FS vs. Ext4 (under heavy write traffic)

– YCSB: 1000w random Read and Update operations
– 16GB flash space + 24GB write traffic
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Problem
• Internal Parallelism Conflicts

– Broken Data Grouping : Grouped data are broken and dispatched to 
different locations.

– Uncoordinated GC Operations: GC processes in two levels are 
performed out-of-order.

– Ineffective I/O Scheduling: erase operations always block the 
read/write operations, while the writes always delay the reads.

• The flash storage architecture block the optimizations.
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• Log-structured File System
– Duplicate Functions: Space Allocation, Garbage Collection.
– Semantics Isolation: FTL Abstraction, Block I/O Interface, Log on Log.

NILFS2, F2FS[FAST’15]

SFS [FAST’12] , 
Multi-streamed SSD [HotStorage’14] 

DFS [FAST’10] , 
Nameless Write [FAST’12] 



Current Approaches (2)
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• Object-based File System [FAST’13]
– Move the semantics from FS to FTL.
– Difficult to be adopted due to dramatic changes
– Internal parallelism under-explored
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ParaFS Architecture
Goal: How to exploit the internal parallelism of the flash devices 
while ensuring effective data grouping, efficient garbage collection, 
and consistent performance?
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Outline
• Background and Motivation
• ParaFS Design

– ParaFS Architecture 
– 2-D Data Allocation
– Coordinated Garbage Collection
– Parallelism-Aware Scheduling

• Evaluation
• Conclusion
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ParaFS Architecture

ParaFS
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Flash Memory

…

…

• Simplified FTL (S-FTL)
– Exposing Physical Layout to FS: # of flash channels, Size 

of flash block, Size of flash page.
– Static Block Mapping: Block-level, rarely modified.
– Data Allocation Functionality is removed.
– GC process is simplified to Erase process.
– WL, ECC: functions which need hardware supports.

IOCTL

READ /  WRITE / ERASE • Interface
– ioctl
– Erase à Trim

ERASE



ParaFS Architecture
• ParaFS: Allocation, Garbage Collection, Scheduling
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Problem #1: Grouping vs. Parallelism
• Hot/Cold Data Grouping
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• Current Data Allocation Schemes
– Page Stripe
– Block Stripe
– Super Block

1. 2-D Data Allocation
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• Exploiting internal parallelism with page unit striping causes 
heavy garbage collection overhead. 
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• Current Data Allocation Schemes
– Page Stripe
– Block Stripe
– Super Block

1. 2-D Data Allocation
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• Not fully exploiting internal parallelism of the device, 
and performs badly in small sync write situation, mailserver. 
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• Current Data Allocation Schemes
– Page Stripe
– Block Stripe
– Super Block

1. 2-D Data Allocation
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1. 2-D Data Allocation
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1. 2-D Data Allocation
• Data Allocation Schemes Comparison

– Page Stripe
– Block Stripe
– Super Block
– 2-D Allocation
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Problem #2: GC vs. Parallelism
• Uncoordinated Garbage Collection
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• Uncoordinated Garbage Collection
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• Garbage Collection in Two levels brings overheads

– FTL only gets page invalidation after Trim commands.
• Due to the no-overwrite pattern. 
• Pages that are invalid in the FS, moved during FTL-level GC. 

– Unexpected timing of GC starts in two levels.
• FTL GC starts before FS GC starts.
• FTL GC blocks the FS I/O and causes unexpected I/O latency. 

– Waste Space.
• Each level keeps over-provision space for GC efficiency.
• Each level keeps meta data space, to record page and 

block(segment) utilization, to remapping. 
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2. Coordinated Garbage Collection



• Coordinated GC process in two levels
– FS-level GC 

• Foreground GC or Background GC 
(trigger condition, selection policy)

• Migration the valid pages from victim segments. 
• Do the checkpoint in case of crash.
• Send the Erase Request to S-FTL. 

– FTL-level GC
• Find the corresponding flash block by static block mapping table.
• Erase the flash block directly. 
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2. Coordinated Garbage Collection

• Multi-threaded Optimization
– One GC process per Region (Flash Channel).
– One Manager process to do the checkpoint after GC.



3. Parallelism-Aware Scheduling
• Request Dispatching Phase

– Select the least busy channel to dispatch write request
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3. Parallelism-Aware Scheduling
• Request Dispatching Phase

– Select the least busy channel to dispatch write request
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• Request Scheduling Phase
– Time Slice for Read Request Scheduling and Write/Erase Request 

Scheduling.
– Schedule Write or Erase Request according to Space Utilization and 

Number of Concurrent Erasing Channels.

– In implementation 

𝑒 = 𝑎×𝑓 + 𝑏×𝑁&

1 = 2×𝑓 + 1×𝑁&?



Free Space

Used Space

3. Parallelism-Aware Scheduling

50%

• Request Scheduling Phase
– Example.
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Outline
• Background and Motivation
• ParaFS Design
• Evaluation
• Conclusion
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Evaluation
• ParaFS implemented on Linux kernel 2.6.32 based on F2FS

– Ext4 (In-place update), BtrFS (CoW), back-ported F2FS (Log-structured update)
– F2FS_SB: back-ported F2FS with large segment configuration

• Testbed: 
– PFTL, S-FTL

Workload Pattern R:W FSYNC I/O Size
Fileserver random read and write files 33/66 N 1 MB

Postmark create, delete, read and append files 20/80 Y 512 B

MobiBench random update records in SQLite 1/99 Y 4 KB

YCSB read and update records in MySQL 50/50 Y 1 KB

• Workloads:
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Evaluation – Light Write Traffic

- Outperforms other file systems in all cases.
- Improves performance by up to 13% (Postmark 32-Channel)
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Evaluation – Heavy Write Traffic
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- Achieves the best throughput among all evaluated file systems
- Outperforms: Ext4(1.0X ~ 2.5X)  F2FS(1.6X ~ 3.1X)  F2FS_SB(1.2X ~1.5X)
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Evaluation - Endurance
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ParaFS decreases the write traffic to the flash memory by 
31.7% ~ 58.1%, compared with F2FS.
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Evaluation – Performance Consistency
• Two Optimizations

– MGC: Multi-threaded GC process
– PS: Parallelism-aware Scheduling

- Multi-threaded GC improves 18.5% (MGC vs. Base)
- Parallelism-aware Scheduling: 20% improvement in first stage. (PS vs. Base)

much consistent performance in GC stage. (ParaFS vs. MGC)



Conclusion
• Internal parallelism has not been leveraged in the FS-

level.
– The mechanisms: Data Grouping, Garbage Collection, I/O 

Scheduling
– The architecture: Semantics Isolation & Redundant Functions

• ParaFS bridges the semantic gap and exploits internal 
parallelism in the FS-level.
– (1) 2-D Allocation: page unit striping and data grouping.
– (2) Coordinated GC: improve the GC efficiency and speed.
– (3) Parallelism-aware Scheduling: more consistent performance.

• ParaFS shows performance improvement by up to 3.1X 
and write reduction by 58.1% compared to F2FS.
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