ParaFS: A Log-Structured File System
to Exploit the
Internal Parallelism of Flash Devices

Jiacheng Zhang, Jiwu Shu, Youyou Lu

Tsinghua University

Outline

« Background and Motivation
» ParaFS Design

* Evaluation

» Conclusion

Solid State Drives — Internal Parallelism

 |nternal Parallelism

— Channel Level, Chip Level, Die Level, Plane Level

— Chips in one package share the same 8/16-bit-I/O bus, but have
separated chip enable (CE) and ready/busy (R/B) control signals.

— Each die has one internal R/B signal.

— Each plane contains thousands of flash blocks and one data register.

v Internal Parallelism - High Bandwidth.

Channel Level

<
) Host E
Interconnect] | @
g
(@]
o

< FTL

Flash

Chip

Flash

{

Chip

Chip

Flash
Chi

Die Level
Plane Level
Block 0 Block 0
Block 1 Block 1
Block ... Block ...
Register Register
Plane 0 Plane 1
Die 0

Chip Level

Flash File Systems

* Log-structured File System

— Duplicate Functions: Space Allocation, Garbage Collection.
— Semantic Isolation: FTL Abstraction, Block I/O Interface, Log on Log.

Log-structured File System

‘ Namespace \

READ / WRITE § / TRIM

FTL
Mapping
wL | ECC
Channel 0 Channel 1 Channel N

|

I o o o

I m Flash m Flash ﬁFlash
I — ——

Flash Memory

Observation

 F2FS vs. Ext4 (under heavy write traffic)
— YCSB: 1000w random Read and Update operations
— 16GB flash space + 24GB write trafﬂc 100

2 M W
“<EXT4 -+ F2FS = 150 A—AHA—X
- 5
= 2 50
5 . 5 s
= ;
= 4 .
= 3 1 4 8 16 32
S @ 25000
= 2 2]
E o < 20000 |
Z O L L L L g 15000 B
)
1 4 8§ 16 32 g 10000 [
Number of Channels E; 5000 F K% y
F2FS has poorer performance than Ext4 i

on SSDs. 1 4 8 16 32

Problem

 |Internal Parallelism Conflicts

— Broken Data Grouping : Grouped data are broken and dispatched to
different locations.

— Uncoordinated GC Operations: GC processes in two levels are
performed out-of-order.

— Ineffective I/O Scheduling: erase operations always block the
read/write operations, while the writes always delay the reads.

» The flash storage architecture block the optimizations.

6

Current Approaches (1)

Log-structured File System

— Duplicate Functions: Space Allocation, Garbage Collection.
— Semantics Isolation: FTL Abstraction, Block I/O Interface, Log on Log.

Log-structured File System - -

‘ Namesiace |

~
T
READ / WRITE § / TRIM

FTL N -

~ ”
Mapping - =~ R
N
V[L ECC S

—

T S - -

Channel 0 Channel 1 Channel N

mFlash || Flash o GFlash

Flash Memory

~~
~~
—

DFS [FAST'10],
~ Nameless Write [FAST’12]

Current Approaches (2)

Object-based File System [FAST 13]

— Move the semantics from FS to FTL.
— Difficult to be adopted due to dramatic changes

— Internal parallelism under-explored

Log-structured File System

‘ Namesiace \

READ / WRITE § / TRIM

FTL
Mappin

wL | EcC

oo T o _ -

Channel 0 Channel 1 Channel N
mFlash | | Flash GFlash
Flash Memory

Object-based File System

I Namespace I

GET / PUT |

Object-based FTL
Mapping

WL ‘ ECC

e Ly

Channel 0

m Flashl

Channel 1

m Flashl

Channel N

m Flashl

Flash Memory

ParaFS Architecture

Goal: How to exploit the internal parallelism of the flash devices

while ensuring effective data grouping, efficient garbage collection,
and consistent performance?

ParaFS

Log-structured File System
Namespace

Namespace : :
m 2-D Allocation Coordinated GC

Parallelism-Aware Scheduler

READ / WRITE | / TRIM

m READ/ "VVRITE /ERAISE co |
Mappmg SFTL
WL ECC
Block Mapping WL ECC

| luiniabs B R R PPR R
1| Channel 0 | | Channel 1 Channel N : : =< x Y |
| [ﬁ\ [ﬁ« . o [ﬁ I Channel 0 Channel 1 Channel N I
: Flash Flash Flash : I T‘\ r\ co F\ I

I
I Flash Memory : : Flash Flash Flash :

I

I

Outline

« Background and Motivation

» ParaFS Design
— ParaFS Architecture
— 2-D Data Allocation
— Coordinated Garbage Collection
— Parallelism-Aware Scheduling

 Evaluation
 Conclusion

10

ParaFS Architecture

« Simplified FTL (S-FTL)
— Exposing Physical Layout to FS: # of flash channels, Size
of flash block, Size of flash page.
— Static Block Mapping: Block-level, rarely modified.
— Data Allocation Functionality is removed.
— GC process is simplified to Erase process.
— WL, ECC: functions which need hardware supports.

IOCTL ParaFS
READ /IWRITE / ER$SE . I * |nterface
S-FTL — loctl
Block Mapping WL ECC — Erase = Trim

Flash Memory

ParaFS Architecture

« ParaFS: Allocation, Garbage Collection, Scheduling

I 2-D Allocation '
: Region 0 Region N,

|
ParaFS S e I
— -~ I
Namespace _ _---"" : |
2-D Allocation - ~|~ ~ Coordinated GC . == '
Parallelism-Aware Scheduler S IER : Coordinated GC :
Y Y ~C T~ ~_ 1 Thread 0 Thread N !
READ / WRITE / ERAISE co | N \JI :
S-FTL | |
|
Block Mapping WL ECC N LT __T___ l
4
A A 7'} eFEEsEEEEEEEEEEEEEEEEE |
memmmte e R e L | : Parallelism-Aware Scheduler :
: Channel 0 Channel 1 Channel N : : Reg. Qdue. 0 Req.RQucel. N :
: .o I I ca Read |
' m Flash m Flash m Flash : I | Write o Write | 1
; , | |_Erase Erase | !
| Flash Memory | i _Read Read | |

Problem #1: Grouping vs. Parallelism

» Hot/Cold Data Grouping

Hot Segment Cold Segment
FS Vision of Data Al|IB||C]||D E F G||H
FTL Vision of Data
_____ | o
Plane0 | [Planel | : I Plane 0 Plane 1 :
Block 0 Block 0 I : Block 0 Block 0 I
I I
I | I
]] : I]] :
. . | | |
. . | I . . I
Block N Block N : : Block N Block N :
Q 0 I | Q 0 |
.1 1 | | | 1 I
: : 1 | 1
N] N I l N] N] I
D J . I I J - I
Die 0 I_Diel | Die 0 I_Die] |
Chip 0 Chip 1

1. 2-D Data Allocation

 Current Data Allocation Schemes

— Page Stri.pe FS Vision of Data
— Block Stripe Segment 0 Segment 1
FTL Vision of Data Recycle Unit
—_——
|
|
[A] [Cl| | |[D]] |
Gl| | |
o I e o
I I [|
I— - s sl
Parallel Block O 1 2 3

« Exploiting internal parallelism with page unit striping causes
heavy garbage collection overhead.

1. 2-D Data Allocation

 Current Data Allocation Schemes

— Page Stri.pe FS Vision of Data
— Block Stripe Segment 0 Segment 1
FTL Vision of Data Recycle Unit
—_——
|
|
[A]) ()
| |
o] N | e | I
D] | I
I— - s sl
Parallel Block O 1 2 3

« Not fully exploiting internal parallelism of the device,
and performs badly in small sync write situation, mailserver.

1. 2-D Data Allocation

 Current Data Allocation Schemes

— Page Stri.pe FS Vision of Data
— Block Stripe Segment 0 Segment 1
FTL Vision of Data Recycle Unit
| |
1 |[A] [C] DIl 1
| [G] |
(L] [] [] L
: [] [] [] [] :
Parallel Block O 1 2 3

« Larger GC unit causes extra garbage collection overhead.

1. 2-D Data Allocation

« Aligned Data Layout in ParaFS
— Region 2> Flash Channel Segment > FlashBlock Page - Flash Page

Channel-level

U S i \ Log-structured Segment
L Write Request T Dimension "RkBlsL N -
A 0 Written Data Page
y i \ o~ y
. /- . = N . =~ N
Region() ,” Region 1"y Region N T~

-~

]
/

7
Hotness-level
Dimension

Alloc. Head 0

Flash Memory | Channel 0 Channel 1 Channel N|

! m Flash m Flash o m Flash _: :

1. 2-D Data Allocation

« Data Allocation Schemes Comparison

— Page Stripe
— Block Stripe
— Super Block
— 2-D Allocation
Parallelism Garbage Collection
Stripe Parallelism GC Grouping GC
Granularity Level Granularity Maintenance Overhead
Page Stripe Page High Block No High
Block Stripe Block Low Block Yes Low
Super Block Page High Multiple Yes Medium
Blocks
2-D Allocation Page High Block Yes Low

L

Problem #2: GC vs. Parallelism

« Uncoordinated Garbage Collection

2

FS Vision of Data ‘ N N N

@[@a‘ G H]

FTL Vision of Data
(_ fl_an_ep_: [Planel | [Plane0 | [Planel |
1
1| Block 0 | Block 1 Block 0 Block 1
| A | CB CE] LG
FTL GC earl | EC | (D] CE]
carly | =<9 | — NNNNN
' |] ONNNNN
= |1 = — ANNAN
| =3 |, — — —
e ——— J — —
Die 0 Die 0
Chip 0 Chip 1

L

Problem j;

t2: GC vs. Parallelism

« Uncoordinated Garbage Collection
FS GC early

1
FS Vision of Data :‘ VAN kﬁ@@l:@ NRY |G | | H]
1

FTL Vision of Data

_ Plane 0 _ Plane 1 Plane 0 _ Planel _

I |
1| Block O : Block 1 Block 0 1| Block 1 :
. HEEAE] | RN CE] | |
First : o] |1 LoD 1 I '
Choice || [= ||| | | =3 = | | |1 :
| = || — DN T |
= |1 = || (| = |
B3| || =3 —|| (3]
e ——— J -~ — S — J

Die 0 Die 0

Chip 0 Chip 1

Second
Choice

2. Coordinated Garbage Collection

« Garbage Collection in Two levels brings overheads

— FTL only gets page invalidation after Trim commands.

* Due to the no-overwrite pattern.
« Pages that are invalid in the FS, moved during FTL-level GC.

— Unexpected timing of GC starts in two levels.
* FTL GC starts before FS GC starts.
« FTL GC blocks the FS I/O and causes unexpected I/O latency.

— Waste Space.
» Each level keeps over-provision space for GC efficiency.

« Each level keeps meta data space, to record page and
block(segment) utilization, to remapping.

2. Coordinated Garbage Collection

Coordinated GC process in two levels

— FS-level GC
» Foreground GC or Background GC
(trigger condition, selection policy)
» Migration the valid pages from victim segments.

» Do the checkpointin case of crash.
« Send the Erase Requestto S-FTL.

— FTL-level GC
* Find the corresponding flash block by static block mapping table.

» Erase the flash block directly.

Multi-threaded Optimization
— One GC process per Region (Flash Channel).
— One Manager process to do the checkpoint after GC. ,

3. Parallelism-Aware Scheduling

Request Dispatching Phase

— Select the least busy channel to dispatch write request

New
Write
Request Queue
Write
Write Read
Write Write
Read Write
Read Read Read

Req. Que. 0 Req. Que. 1 Req. Que. 2 Req. Que. 3

Wchannel — z (Wread XSizereadr erite ><Sizewrite)

3. Parallelism-Aware Scheduling

* Request Dispatching Phase

— Select the least busy channel to dispatch write request

* Request Scheduling Phase

— Time Slice for Read Request Scheduling and Write/Erase Request
Scheduling.

— Schedule Write or Erase Request according to Space Utilization and
Number of Concurrent Erasing Channels.

e = aXf + bXN,

— In implementation
1% 2xf + 1XN,

24

3. Parallelism-Aware Scheduling

 Request Scheduling Phase

— Example. [Free Space
- Used Space
eo =2*75%+0>1 Write Erase Erase Write

e =2*x25%+0<1

e, =2*30%+25% <1

e3 =2*30%+ 50% > 1
50%

Channel 0 Channel 1 Channel 2 Channel 3
fF=75% f=25% f=30% f=30%

Outline

« Background and Motivation
» ParaFS Design

» Evaluation

» Conclusion

26

Evaluation

« ParaFS implemented on Linux kernel 2.6.32 based on F2FS
— Ext4 (In-place update), BtrFS (CoW), back-ported F2FS (Log-structured update)
— F2FS_SB: back-ported F2FS with large segment configuration

* Testbed:
— PFTL, S-FTL Host Interface PClIe 2.0 x8
Number of Flash Channel 34
Capacity per Channel 32G
NAND Type 25nm MLC
Page Size 8KB
Block Size 2MB

Read Bandwidth per Channel | 49.84 MB/s
Write Bandwidth per Channel | 6.55 MB/s

« Workloads:
Workload Pattern R:W FSYNC I/0 Size
Fileserver randomread and write files 33/66 N 1 MB
Postmark create, delete, read and append files 20/80 Y 512B
MobiBench randomupdaterecords in SQLite 1/99 Y 4 KB
YCSB read and updaterecords in MySQL 50/50 Y 1 KB

Evaluation — Light Write Traffic

« Normalized to F2FS in 8-Channel case

1.2 3
M BtrFS WEXT4 " F2FS MF2FS SB MParaFS B BtrFS WEXT4 ®WF2FS MF2FS SB MParaFS
| 2.5
= =
= 0.8 3 2
i= =
= 0.6 215
Q Q
N N
= =
0.4 1
£ £
Z Z
z 0.2 0.5
0 0
Fileserver Postmark MobiBench YCSB Fileserver Postmark MobiBench YCSB
Channel =8 Channel =32

- Qutperforms other file systems in all cases.
- Improves performance by up to 13% (Postmark 32-Channel)

28

Evaluation — Heavy Write Traffic

m BtrFS mEXT4 F2FS24 m F2FS SB mParaFS

24
20 F 20
16 F 16
12 12
8 8
4 4
0 0
1 4 8 16 32 1 4 8 16 32
Fileserver Postmark
16 7
6
12 5
4
8
3
4 2
1
0 0
1 4 8 16 32 1 4 8 16 32
MobiBench YCSB

- Achieves the best throughput among all evaluated file systems
- Outperforms: Ext4(1.0X~ 2.5X) F2FS(1.6X ~ 3.1X) F2FS_SB(1.2X ~1.5X)

Evaluation - Endurance

50000

of Recycled Blocks
- N W A
S oS S oS
S S S S
S S S S
S S S S

Write Traffic (GB)

B BtrFS *EXT4

GC Efficiency

— o — — - -
kKK
——¢—
1 4 8 16 32
Recycled Block Count

S
%

S
=)

S
N

&
)

F2FS) ©F2FS SB #-ParaFS

e

S == —

1 4 8 16 32
GC Efficiency

m BtrFS mEXT4 mF2FS mF2FS SB mParaFS

| 120 |

ParaFS decreases the write traffic to the flash memory by

31.7% ~ 58.1%, compared with

1 4 8 16 32

Write Traffic from FS

Write Traffic

ov

N A
- T

F2FS.

1 4 8 16 32
Write Traffic from FTL

Evaluation — Performance Consistency

« Two Optimizations
— MGC: Multi-threaded GC process
— PS: Parallelism-aware Scheduling

25000 - —-—ParaFS_Base ----- ParaFS PS - — ParaFS_MGC

ParaFS

20000 <.
15000 -
10000 -
5000 -

.

IOPS

0 | 10b0 | 2000 3000 4000 5000 6000

- Multi-threaded GC improves 18.5% (MGC vs. Base)

- Parallelism-aware Scheduling: 20% improvement in first stage. (PS vs. Base)
much consistent performance in GC stage. (ParaFS vs. MGC)

31

Conclusion

* |Internal parallelism has not been leveraged in the FS-
level.

— The mechanisms: Data Grouping, Garbage Collection, I/O
Scheduling

— The architecture: Semantics Isolation & Redundant Functions

« ParaFS bridges the semantic gap and exploits internal
parallelism in the FS-level.
— (1) 2-D Allocation: page unit striping and data grouping.
— (2) Coordinated GC: improve the GC efficiency and speed.
— (3) Parallelism-aware Scheduling: more consistent performance.

« ParaFS shows performance improvement by up to 3.1X
and write reduction by 58.1% compared to F2FS.

32

Thanks

ParaFS: A Log-Structured File System
to Exploit the
Internal Parallelism of Flash Devices

Jiacheng Zhang, Jiwu Shu, Youyou Lu
luyouyou@tsinghua.edu.cn
http://storage.cs.tsinghua.edu.cn/~lu

33

