
ParaFS: A Log-Structured File System
to Exploit the

Internal Parallelism of Flash Devices

Jiacheng Zhang, Jiwu Shu, Youyou Lu

Tsinghua University

1

Outline
• Background and Motivation
• ParaFS Design
• Evaluation
• Conclusion

2

Solid State Drives – Internal Parallelism
• Internal Parallelism

– Channel Level, Chip Level, Die Level, Plane Level
– Chips in one package share the same 8/16-bit-I/O bus, but have

separated chip enable (CE) and ready/busy (R/B) control signals.
– Each die has one internal R/B signal.
– Each plane contains thousands of flash blocks and one data register.

H
/W

 Interface

Host
Interconnect

Flash
Chip

FTL

Flash
Chip

Flash
Chip

Flash
Chip

Die 0 Die 1

Block 0
Block 1
Block ...

Register

Block 0
Block 1
Block ...

Plane 0 Plane 1

Channel Level

Chip Level

Die Level

Plane Level

Register

ü Internal Parallelism à High Bandwidth.

Flash File Systems

4

• Log-structured File System
– Duplicate Functions: Space Allocation, Garbage Collection.
– Semantic Isolation: FTL Abstraction, Block I/O Interface, Log on Log.

FTL
READ / WRITE / TRIM

Log-structured File System
Namespace

Alloc. GC

Alloc.
Mapping

GC WL ECC

Channel N

Flash
…Channel 0

Flash

Channel 1

Flash

Flash Memory

Alloc. GC

GCAlloc.

Observation
• F2FS vs. Ext4 (under heavy write traffic)

– YCSB: 1000w random Read and Update operations
– 16GB flash space + 24GB write traffic

0
1
2
3
4
5
6
7

1 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Channels

EXT4 F2FS

0

25

50

75

100

1 4 8 16 32

G
C

 E
ffi

ci
en

cy
 (%

)

0

5000

10000

15000

20000

25000

1 4 8 16 32

of

 R
ec

yc
le

d
B

lo
ck

s

F2FS has poorer performance than Ext4
on SSDs.

Problem
• Internal Parallelism Conflicts

– Broken Data Grouping : Grouped data are broken and dispatched to
different locations.

– Uncoordinated GC Operations: GC processes in two levels are
performed out-of-order.

– Ineffective I/O Scheduling: erase operations always block the
read/write operations, while the writes always delay the reads.

• The flash storage architecture block the optimizations.

6

FTL
READ / WRITE / TRIM

Log-structured File System
Namespace

Alloc. GC

Alloc.
Mapping

GC WL ECC

Channel N

Flash
…Channel 0

Flash

Channel 1

Flash

Flash Memory

Current Approaches (1)

7

• Log-structured File System
– Duplicate Functions: Space Allocation, Garbage Collection.
– Semantics Isolation: FTL Abstraction, Block I/O Interface, Log on Log.

NILFS2, F2FS[FAST’15]

SFS [FAST’12] ,
Multi-streamed SSD [HotStorage’14]

DFS [FAST’10] ,
Nameless Write [FAST’12]

Current Approaches (2)

FTL
READ / WRITE / TRIM

Log-structured File System
Namespace

Alloc. GC

Alloc.
Mapping

GC WL ECC

Channel N

Flash
…Channel 0

Flash

Channel 1

Flash

Flash Memory

• Object-based File System [FAST’13]
– Move the semantics from FS to FTL.
– Difficult to be adopted due to dramatic changes
– Internal parallelism under-explored

Object-based FTL
GET / PUT

Object-based File System
Namespace

Alloc.

Mapping

GC WL ECC

Channel N

Flash
…

Channel 0

Flash

Channel 1

Flash

Flash Memory

ParaFS Architecture
Goal: How to exploit the internal parallelism of the flash devices
while ensuring effective data grouping, efficient garbage collection,
and consistent performance?

FTL
READ / WRITE / TRIM

Log-structured File System
Namespace

GCAlloc.

Alloc.
Mapping

GC WL ECC

Channel N

Flash
…Channel 0

Flash

Channel 1

Flash

Flash Memory

Block Mapping

2-D Allocation Coordinated GC
Parallelism-Aware Scheduler

S-FTL

WL ECC

Channel N

Flash

Channel 0

Flash

Channel 1

Flash

Flash Memory

…

…

…

ParaFS
Namespace

READ / WRITE /

Alloc.

Alloc.

GC

GC
Mapping

ERASE

Outline
• Background and Motivation
• ParaFS Design

– ParaFS Architecture
– 2-D Data Allocation
– Coordinated Garbage Collection
– Parallelism-Aware Scheduling

• Evaluation
• Conclusion

10

ParaFS Architecture

ParaFS

S-FTL
Block Mapping WL ECC

Flash Memory

…

…

• Simplified FTL (S-FTL)
– Exposing Physical Layout to FS: # of flash channels, Size

of flash block, Size of flash page.
– Static Block Mapping: Block-level, rarely modified.
– Data Allocation Functionality is removed.
– GC process is simplified to Erase process.
– WL, ECC: functions which need hardware supports.

IOCTL

READ / WRITE / ERASE • Interface
– ioctl
– Erase à Trim

ERASE

ParaFS Architecture
• ParaFS: Allocation, Garbage Collection, Scheduling

S-FTL

Block Mapping WL ECC

Channel N

Flash

Channel 0

Flash

Channel 1

Flash

Flash Memory

…

…

…

ParaFS
Namespace

2-D Allocation Coordinated GC
Parallelism-Aware Scheduler

READ / WRITE / ERASE

2-D Allocation
Region 0 Region N

…

…

Coordinated GC
Thread 0 Thread N

Parallelism-Aware Scheduler

Read
Write
Erase
Read

Req. Que. 0

…
Req. Que. N

Read
Write
Erase
Read

Problem #1: Grouping vs. Parallelism
• Hot/Cold Data Grouping

Block 0
0
1

N

…

Block N
0
1

N

…
…

Plane 0
Block 0

0
1

N

…

Block N
0
1

N

…
…

Plane 1

Die 0 Die 1
Chip 0

Block 0
0
1

N

…

Block N
0
1

N

…
…

Plane 0
Block 0

0
1

N

…

Block N
0
1

N

…
…

Plane 1

Die 0 Die 1
Chip 1

…

Hot Segment Cold Segment

FS Vision of Data

FTL Vision of Data

A B C D E F G H

A B C D
E F G H

• Current Data Allocation Schemes
– Page Stripe
– Block Stripe
– Super Block

1. 2-D Data Allocation

A B C D E F G H
Segment 0 Segment 1

FS Vision of Data

FTL Vision of Data

A
E
C
G

B
F
C
G

C
G
C
G

D
H
C
G

Parallel Block 0 1 2 3

Recycle Unit

• Exploiting internal parallelism with page unit striping causes
heavy garbage collection overhead.

A B C D
E F G H

• Current Data Allocation Schemes
– Page Stripe
– Block Stripe
– Super Block

1. 2-D Data Allocation

A B C D E F G H
Segment 0 Segment 1

FS Vision of Data

FTL Vision of Data

A
B
C
D

E
F
G
H

C
G
C
G

D
H
C
G

Parallel Block 0 1 2 3

Recycle Unit

• Not fully exploiting internal parallelism of the device,
and performs badly in small sync write situation, mailserver.

A
B
C
D

E
F
G
H

• Current Data Allocation Schemes
– Page Stripe
– Block Stripe
– Super Block

1. 2-D Data Allocation

A B C D E F G H
Segment 0 Segment 1

FS Vision of Data

FTL Vision of Data

A
B
C
D

E
F
G
H

C
G
C
G

D
H
C
G

Parallel Block 0 1 2 3

Recycle Unit

• Larger GC unit causes extra garbage collection overhead.

A B C D
E F G H

1. 2-D Data Allocation

Flash Memory Channel N

Flash

Channel 0

Flash

Channel 1

Flash
…

Alloc.
Space

Free
Space

Alloc. Head 0

Alloc. Head 1 …

Alloc. Head m

…

Region 0

Free Seg. List

…

Region 1
…

Region N

…

1 3 42 5…NWrite Request
Channel-level

Dimension

• Aligned Data Layout in ParaFS
– Region à Flash Channel Segment à Flash Block Page à Flash Page

Log-structured Segment

Written Data Page

Hotness-level
DimensionAlloc. Head 1

1. 2-D Data Allocation
• Data Allocation Schemes Comparison

– Page Stripe
– Block Stripe
– Super Block
– 2-D Allocation

Page Stripe Page High Block No High
Block Stripe Block Low Block Yes Low
Super Block Page High Multiple

Blocks Yes Medium

2-D Allocation Page High Block Yes Low

Parallelism Garbage Collection
Stripe

Granularity
Parallelism

Level
GC

Granularity
Grouping

Maintenance
GC

Overhead

Problem #2: GC vs. Parallelism
• Uncoordinated Garbage Collection

A B C D E F G HFS Vision of Data

FTL Vision of Data

A B C D E F

Die 0

Chip 0

Plane 0

…

Block 0

Plane 1

…

Block 1
B
D

Die 0

Chip 1

Plane 0
…

Block 0
E
F

Plane 1

…

Block 1
G
HFTL GC early

… …

A
C

• Uncoordinated Garbage Collection

A B C D E F G HFS Vision of Data

FTL Vision of Data

FS GC early

A B C D E F

Die 0

Chip 0

Plane 0

…

Block 0
A
C

Plane 1

…

Block 1
B
D

Die 0

Chip 1

Plane 0
…

Block 0
E
F

Plane 1

…

Block 1
G
H

… …

A
C

B
DFirst

Choice
Second
Choice

Problem #2: GC vs. Parallelism

• Garbage Collection in Two levels brings overheads

– FTL only gets page invalidation after Trim commands.
• Due to the no-overwrite pattern.
• Pages that are invalid in the FS, moved during FTL-level GC.

– Unexpected timing of GC starts in two levels.
• FTL GC starts before FS GC starts.
• FTL GC blocks the FS I/O and causes unexpected I/O latency.

– Waste Space.
• Each level keeps over-provision space for GC efficiency.
• Each level keeps meta data space, to record page and

block(segment) utilization, to remapping.

21

2. Coordinated Garbage Collection

• Coordinated GC process in two levels
– FS-level GC

• Foreground GC or Background GC
(trigger condition, selection policy)

• Migration the valid pages from victim segments.
• Do the checkpoint in case of crash.
• Send the Erase Request to S-FTL.

– FTL-level GC
• Find the corresponding flash block by static block mapping table.
• Erase the flash block directly.

22

2. Coordinated Garbage Collection

• Multi-threaded Optimization
– One GC process per Region (Flash Channel).
– One Manager process to do the checkpoint after GC.

3. Parallelism-Aware Scheduling
• Request Dispatching Phase

– Select the least busy channel to dispatch write request

23

New
Write

Write

Read
Req. Que. 0

Write

Read
Req. Que. 1

Read Write

Req. Que. 2

Write

Write

Req. Que. 3
Read

Read

Request Queue

𝑊"#$%%&' =)(𝑊+&$,×𝑆𝑖𝑧𝑒+&$, ,𝑊3+45&×𝑆𝑖𝑧𝑒3+45&)

3. Parallelism-Aware Scheduling
• Request Dispatching Phase

– Select the least busy channel to dispatch write request

24

• Request Scheduling Phase
– Time Slice for Read Request Scheduling and Write/Erase Request

Scheduling.
– Schedule Write or Erase Request according to Space Utilization and

Number of Concurrent Erasing Channels.

– In implementation

𝑒 = 𝑎×𝑓 + 𝑏×𝑁&

1 = 2×𝑓 + 1×𝑁&?

Free Space

Used Space

3. Parallelism-Aware Scheduling

50%

• Request Scheduling Phase
– Example.

Channel 0

𝑓 = 75%

Channel 1

𝑓 = 25%

Channel 2

𝑓 = 30%

Channel 3

𝑓 = 30%

𝑒D = 2 ∗ 75%+ 0 > 1 Write Erase Erase Write

𝑒G = 2 ∗ 25%+ 0 < 1

𝑒I = 2 ∗ 30%+ 25% < 1

𝑒J = 2 ∗ 30%+ 50% > 1

Outline
• Background and Motivation
• ParaFS Design
• Evaluation
• Conclusion

26

Evaluation
• ParaFS implemented on Linux kernel 2.6.32 based on F2FS

– Ext4 (In-place update), BtrFS (CoW), back-ported F2FS (Log-structured update)
– F2FS_SB: back-ported F2FS with large segment configuration

• Testbed:
– PFTL, S-FTL

Workload Pattern R:W FSYNC I/O Size
Fileserver random read and write files 33/66 N 1 MB

Postmark create, delete, read and append files 20/80 Y 512 B

MobiBench random update records in SQLite 1/99 Y 4 KB

YCSB read and update records in MySQL 50/50 Y 1 KB

• Workloads:

28

Evaluation – Light Write Traffic

- Outperforms other file systems in all cases.
- Improves performance by up to 13% (Postmark 32-Channel)

0

0.2

0.4

0.6

0.8

1

1.2

Fileserver Postmark MobiBench YCSB

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Channel = 8

BtrFS EXT4 F2FS F2FS_SB ParaFS

0

0.5

1

1.5

2

2.5

3

Fileserver Postmark MobiBench YCSB
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t
Channel = 32

BtrFS EXT4 F2FS F2FS_SB ParaFS

• Normalized to F2FS in 8-Channel case

Evaluation – Heavy Write Traffic

0

4

8

12

16

20

24

1 4 8 16 32
Fileserver

0

4

8

12

16

1 4 8 16 32
MobiBench

0
1
2
3
4
5
6
7

1 4 8 16 32
YCSB

- Achieves the best throughput among all evaluated file systems
- Outperforms: Ext4(1.0X ~ 2.5X) F2FS(1.6X ~ 3.1X) F2FS_SB(1.2X ~1.5X)

0

4

8

12

16

20

24

1 4 8 16 32
Postmark

Evaluation - Endurance

10000

20000

30000

40000

50000

1 4 8 16 32#
of

 R
ec

yc
le

d
B

lo
ck

s

Recycled Block Count

0.2

0.4

0.6

0.8

1

1 4 8 16 32

G
C

 E
ff

ic
ie

nc
y

GC Efficiency

0

20

40

60

80

1 4 8 16 32

W
rit

e
Tr

af
fic

 (G
B

)

Write Traffic from FS

0

20

40

60

80

100

120

1 4 8 16 32

W
rit

e
Tr

af
fic

 (G
B

)

Write Traffic from FTL

ParaFS decreases the write traffic to the flash memory by
31.7% ~ 58.1%, compared with F2FS.

31

Evaluation – Performance Consistency
• Two Optimizations

– MGC: Multi-threaded GC process
– PS: Parallelism-aware Scheduling

- Multi-threaded GC improves 18.5% (MGC vs. Base)
- Parallelism-aware Scheduling: 20% improvement in first stage. (PS vs. Base)

much consistent performance in GC stage. (ParaFS vs. MGC)

Conclusion
• Internal parallelism has not been leveraged in the FS-

level.
– The mechanisms: Data Grouping, Garbage Collection, I/O

Scheduling
– The architecture: Semantics Isolation & Redundant Functions

• ParaFS bridges the semantic gap and exploits internal
parallelism in the FS-level.
– (1) 2-D Allocation: page unit striping and data grouping.
– (2) Coordinated GC: improve the GC efficiency and speed.
– (3) Parallelism-aware Scheduling: more consistent performance.

• ParaFS shows performance improvement by up to 3.1X
and write reduction by 58.1% compared to F2FS.

32

Jiacheng Zhang, Jiwu Shu, Youyou Lu
luyouyou@tsinghua.edu.cn

http://storage.cs.tsinghua.edu.cn/~lu
33

Thanks
ParaFS: A Log-Structured File System

to Exploit the
Internal Parallelism of Flash Devices

