
Scalable In-Memory Transaction 

Processing with HTM

Yingjun Wu and Kian-Lee Tan

National University of Singapore

1



HTM simplifies implementing 

concurrent programs

2

Lock-free programming Hardware transactional memory

__sync_bool_compare_and_swap(…)

__sync_fetch_and_add(…)

__sync_synchronize(…)

...

Atomic Buildins TSX Instructions

_xbegin()

_xend()

...



HTM is not a silver bullet for 

transaction processing

3

Low-contention workload.

(theta = 0)
High-contention workload.

(theta = 0.8)

HTM-assisted main-memory database

Processing multi-key transactions on a standard hash map.

2X
3X



HTM is not a silver bullet for 

transaction processing

• Existing works apply HTM to OCC protocol.

– High database transaction abort rate;

– High database transaction restart overhead.

4

Read Validation Write

Atomic execution
Conventional 

OCC

Vulnerable window

HTM-assisted 

OCC
Vulnerable window

Protected!

Modifiable!



Our proposal: HTCC

• A new HTM-assisted concurrency control protocol 

that targets at supporting scalable and robust 

transaction processing even under highly contended 

workload.

– Reduce transaction abort rate using a hybrid protocol;

– Minimize transaction restart overhead using delta 

restoration.

5



Data Classification

• Split the data into hot and cold records and process 

them differently.

6

Database

Hot data

Cold data



Data Classification

• Data structure.

7

ts Key Value

ContentMetadata

lock vis hot cnt



Data Classification

• Data structure.

8

record1 N

record2 N

record3 N

record4 Y

record5 N

hot cnt

background thread



Data Classification

• Data structure.

9

background thread

record1 N 97

record2 N 5

record3 N 9

record4 Y 23

record5 N 17

hot cnt Periodically check abort count.



Data Classification

• Data structure.

10

background thread

record1 N 97

record2 N 5

record3 N 9

record4 Y 23

record5 N 17

hot cnt Detect top K hot records.



Data Classification

• Data structure.

11

background thread

Set the hot flag transactionally!

record1 Y 97

record2 N 5

record3 N 9

record4 N 23

record5 N 17

hot cnt



Hybrid Protocol

• Transaction phases.

12

Txn begin Txn commit Txn end

R-A R-B R-CRead

Validation R-A R-B R-C

Write R-A R-B R-C

HTM region

Fine-grained locking performs well for high-contention workload;

HTM performs well for low-contention workload.

COMMIT!

Fine-grained locking for hot data

HTM region for cold data



Delta Restoration

• Workset caching during the read phase.

13

L1: x<-read(A)

L2: write(A, x+1)

L3: y<-read(B)

L4: z<-read(C)

L5: write(z, x+y)

PROGRAM STORAGECACHE

R-A

R-B

R-C

R-D

R-A



Delta Restoration

• Operation restoration during the validation phase.

14

L1: x<-read(A)

L2: write(A, x+1)

L3: y<-read(B)

L4: z<-read(C)

L5: write(z, x+y)

R-A

R-A

R-B

R-C

R-D

PROGRAM CACHE STORAGE

Accesses to cold records are still performed optimistically using HTM;

Deadlock never happens because of HTM’s guarantee of atomicity and isolation.



Experiments

• Intel Xeon Processor E7-4820, 4 sockets, 40 cores.

• We compare with the following protocols:

– 2PL: classic two-phase locking.

– OCC: classic optimistic concurrency control.

– SOCC: Silo’s OCC implementation.

– HOCC: Existing HTM-assisted OCC.

– HTO: Existing HTM-assisted timestamp ordering.

15



Experiments: Bottlenecks

• Database transaction rate with different restart threshold.

16

TPC-C: 40 warehouse (low contention). TPC-C: 4 warehouse (high contention).



Experiments: Bottlenecks

• Database transaction abort rate with different restart threshold.

17
TPC-C: 4 warehouse (high contention).



Experiments: Scalability

• Database transaction rate under different workloads.

18

TPC-C: 40 warehouse (low contention). TPC-C: 4 warehouse (high contention).



Conclusion

• We proposed HTCC, an HTM-assisted concurrency 

control protocol that achieves scalable and robust 

in-memory transaction processing on multicores.

– Hybrid synchronization mechanism for reducing 

transaction abort rate;

– Workset caching for minimizing transaction restart 

overhead.

19



Thanks!

20


