Nitro: A Capacity-Optimized SSD Cache for Primary Storage

Cheng Li*, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and Grant Wallace

*Rutgers University

EMC Corporation

Motivation

- Maximize performance and capacity while minimizing cost
- Unified (hybrid) storage is emerging
 - HDD: low performance, low \$/GB (.03-.1 for HDD)
 - SSD: high performance, high \$/GB (.5-1.2 for SSD)
- SSD caching as performance accelerator
 - Leverage duplicate content
 - Diverse deduplication opportunities (e.g., logs, VM boot-storm)
 - Challenges: duplicate tracking, fingerprint management
 - Leverage compression
 - Large capacity saving opportunities (10-60%)
 - Challenges: fast decompression (LZMA), variable size data

Nitro: A Capacity-Optimized SSD Cache

- Increase effective cache size
 - Leverage deduplication and compression
 - Accelerate two prototype systems
- Support multiple platforms
 - Capacity-Optimized Storage
 - Deduplication and compression
 - Traditional Primary Storage
 - No data reduction technique

- Balance design goals
 - Cost-efficient (SSD as a cache)
 - Performance (~2X over previous work)
 - SSD lifespan (65% fewer erasures)
 - Resources (reduce RAM footprint)

[©] Copyright 2014 EMC Corporation. All rights reserved

Nitro Insertion Path

Nitro Deduplication Path SHA1: 0x90FF WRITE fd offset=8, size=8KB Nitro **FP Index:** FP → SD Loc. <fd,0> Dup writes, SHA1=FP=0x90FF FP1 <fd,8> Dup **File Index:** RAM header HDD HDD HDD Hard Disk SSD Drives **FM**² *IGERS*

Nitro Deduplication Path

Experimental Methodology

- Storage traces
 - Florida International University (FIU)
 - Homes, WebVM, Mail
 - VM snapshot and restore traces
- Platforms
 - SSD simulator (measure SSD erasures)
 - Prototype with two storage systems
 - Capacity-Optimized Storage (COS)
 - Traditional Primary Storage (TPS)

Cache Variants

- Explore design variants
 - Extent-based vs. WEU-based

(D=deduplication, C=compression, ND=no deduplication, NC=no compression)

Variants	Write/Evict Granularity	Deduplication	Compression
Extent (ND, NC)	Extent		
Extent (D, NC)	Extent	Х	
WEU (ND, NC)	WEU		
WEU (D, NC)	WEU	Х	
WEU (D, C) (Nitro)	WEU	Х	Х

Can Nitro Increase Read-hit Ratio?

Deduplication and compression increase read-hit ratio (2% cache)

Nitro Extends SSD Lifespan

- WEU eliminates SSD overwrites penalty
- TRIM: SATA command to invalidate addresses
 - Decreases garbage collection copy forward in SSD

Additional Results

- Small hit-ratio increase leads to large IOPS boost
- Partial fingerprint index
 - Flexibility to trade-off deduplication, performance and RAM
- Nitro decompression has minimal overhead
- Sensitivity analysis
- Leverage content overlap for snapshot restore
- Deduplication reduces writes to SSD

Nitro Benefits

- Leverages deduplication, compression, and SSD performance
- Increases effective cache size
- Improves performance in two systems (cos and TPS)
- Balances performance, cost, SSD lifespan, and resources
 - Performance: up to 120% improvement
 - Writes to SSD: up to 53% reduction

O&A

Nitro: A Capacity-Optimized SSD Cache for Primary Storage

Cheng Li*, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and Grant Wallace

*Rutgers University EMC corporation

