%

RICE

+V

Medusa: Concurrent
Programming in
Surprising Places

Thomas W. Barr, Scott Rixner
Rice University
USENIX ATC 2014, June 2014

1 rice computer architecture group

Embedded Concurrency

[]
http://hci.cs.siue.edu/NSF/Files/Semester/Week13-2/PPT-Text/Slide13.html
- EXpensive

= 1 car, 100m LOC
[Charette(9]

= Vulnerable
- [Checkoway11]

- Deadly
- Therac-25 [Leveson93]

@ RIC E 2 rice computer architecture group

http://hci.cs.siue.edu/NSF/Files/Semester/Week13-2/PPT-Text/Slide13.html

+V

@ RIC E 3 rice computer architecture group

(click!)

(images from sparkfun.com, Creative Commons, BY-NC-SA)

@ RIC E 4 rice computer architecture group

http://sparkfun.com

(Cligiic)

@ RIC E 5 rice computer architecture group

Bounce Bounce

Off On Off

http://www.protostack.com/blog/2010/03/debouncing-a-switch/

@ RIC E 6 rice computer architecture group

debounce():

do math loop forever:

do math wait for button press
do math R o wait some time

do math S read button

@ RIC E 7 rice computer architecture group

Owl and Medusa

- Owl Embedded Python
- USENIX ATC 2012
- (embeddedpython.org)
= Python
- Easy to get started
- |/0 is still hard!
- Medusa

- New language

- Actor model [HallerO6]
- Message passing

@ RIC E 8 rice computer architecture group

http://embeddedpython.org

V"

Why is |/0 hard?

—+V

o o—

CPU %

%' RICE

= Polling - Python
- Simple
- Slow
= Interrupts - C
- Error-prone
- Costly
- Bridging - Medusa
- Ease of polling
- Speed of interrupts

9 rice computer architecture group

Polling 1/0

loop forever:
while (!button_down)

{

// spin
loop forever: P

do_math()
more_math()
yet_more_math()

}

set_timer()
while (!timer_expired)
{

// spin

3
read_button()

%q RIC E 10 rice computer architecture group

Polling I/0

|

= Most of the time is spent in the
spin loop

- Wasted cycles
= Schedule less frequently?
- Latency goes up

- May miss events
- >5000 Hz on our systems

@ RIC E 11 rice computer architecture group

Interrupt 1/0

on button press:

loop forever: ,
set_timer()

do_math()
more_math()

on timer expiration:
yet_more_math()

read_button()

%‘] R[CE 14 rice computer architecture group

Interrupt 1/0

= Current solution

- Used in vendor
examples

- Recommended in
documentation

= 170 lines of C

%' RICE

15

on button press:
set_timer()

&
w

on timer expiratic‘
read_button()

w

rice computer architecture group

Interrupts in interpreters

time

[T

@ RlC E 16 rice computer architecture group

Interrupts in interpreters

button
press
time v
>
) M Call

\

Interrupt handler: m

@ RIC E 17 rice computer architecture group

Interrupts in interpreters

button
press

time v >
[

\ t

Interrupt handler: m

@ RIC E 18 rice computer architecture group

Interrupts in interpreters

button

time

Reentrant interpreter

Int

@ RIC E 19 rice computer architecture group

Interrupts in interpreters

button
press

o =
\ 4
Delayed interrupt handler: m

@ RIC E 20 rice computer architecture group

time

Interrupts in interpreters

button

Might miss events ¢

Delayed

@ RIC E 21 rice computer architecture group

Message bridging

N/S Light =

% E/W Light O
5 N/S Sensor + = Turn hardware events
i - °
= E/W Sensor _Z,‘ into software messages
S EMS Sensor > - Extend actor domain
=i e to hardware

- |IRQs on microkernels
% i) - Su?;crlzltlon mf:cdel
e ti bridge ISR [§ - reads specity
S ’ hardware of interest
L o e e e

@ RIC E 22 rice computer architecture group

Message bridging

time

[T

@ RlC E 23 rice computer architecture group

Message bridging

button
press

time v

EIme

<+
ySI @8pLiq

@ RIC E 24 rice computer architecture group

Bridge interrupt handler

#define ALL PINS Oxff

volid GPIOInterruptHandler (unsigned long port) {
uint8 t values ;
/* clear all the interrupts for this port =*/

GPIOPinIntClear(port, ALL PINS);

/* read the value of the port =x/
values = GPIOPinRead(port, ALL PINS);

/* send it to the subscribers =/
bridge produce(GPIO BRIDGE, &values , sizeof(uint8 t));

Bridge Buffer
%q RIC E 25 rice computer architecture group

Bridge interrupt handler

#define ALL PINS Oxff

volid GPIOInterruptHandler (unsigned long port) {
uint8 t values ;
/* clear all the interrupts for this port =*/
GPIOPinIntClear(port, ALL PINS);

/* read the value of the port =x/
values = GPIOPinRead(port, ALL PINS);

/* send it to the subscribers =/
bridge produce(GPIO BRIDGE, &values , sizeof(uint8 t));

| !
event

Bridge Buffer
%q RIC E 26 rice computer architecture group

Message bridging

button
press

time v

EIme

<
-

ySI @8pLiq

event

Bridge Buffer
@ RIC E 27 rice computer architecture group

Message bridging

button
press

\ 4
deliver
) M
v 4

(@) b] event

time

ySI @8pLiq

event

Bridge Buffer
@ RIC E 28 rice computer architecture group

Message bridging

button
press

v
>
) M
v 4

(@) b] event

time

ySI @8pLiq

Bridge Buffer
@ RIC E 29 rice computer architecture group

Message bridging

- Two-phase bridging
- Copy data into bridge immediately
- ~4 microseconds
- No allocation

- Copy data from bridge “later”
- ~10s of milliseconds

- Allocate long-term storage
- When VM is not running

%

RIC E 30

rice computer architecture group

Message bridging

- Debouncing:
- Polling: 17 lines of Python
- Interrupts: 141 lines of C
Ut I L - Bridges: 33 lines of Medusa

off On off - Zero impact on other
threads

Bou_nce Bounce

@ RIC E 31 rice computer architecture group

%

O

Conclusions

—+V

o’ o—

CPU %

RICE

- All embedded systems are
concurrent

- Current solutions are
inadequate

= Actor model well-suited to
/0

- Polling-like simplicity

- Interrupt-like
performance

32 rice computer architecture group

