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Embedded Concurrency

[ ]
http://hci.cs.siue.edu/NSF/Files/Semester/Week13-2/PPT-Text/Slide13.html
- EXpensive

= 1 car, 100m LOC
[Charette(9]

= Vulnerable
- [Checkoway11]

- Deadly
- Therac-25 [Leveson93]

@ RIC E 2 rice computer architecture group


http://hci.cs.siue.edu/NSF/Files/Semester/Week13-2/PPT-Text/Slide13.html
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(click!)

(images from sparkfun.com, Creative Commons, BY-NC-SA)
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http://sparkfun.com

(Cligiic)
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Bounce Bounce

Off On Off

http://www.protostack.com/blog/2010/03/debouncing-a-switch/
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debounce():

do math loop forever:

do math wait for button press
do math R o wait some time

do math S read button
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Owl and Medusa

- Owl Embedded Python
- USENIX ATC 2012
- (embeddedpython.org)
= Python
- Easy to get started
- |/0 is still hard!
- Medusa

- New language

- Actor model [HallerO6]
- Message passing
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http://embeddedpython.org
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Why is |/0 hard?
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= Polling - Python
- Simple
- Slow
= Interrupts - C
- Error-prone
- Costly
- Bridging - Medusa
- Ease of polling
- Speed of interrupts
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Polling 1/0

loop forever:
while (!button_down)

{

// spin
loop forever: P

do_math()
more_math()
yet_more_math()

}

set_timer()
while (!timer_expired)
{

// spin

3
read_button()
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Polling I/0

|

= Most of the time is spent in the
spin loop

- Wasted cycles
= Schedule less frequently?
- Latency goes up

- May miss events
- >5000 Hz on our systems
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Interrupt 1/0

on button press:

loop forever: ,
set_timer()

do_math()
more_math()

on timer expiration:
yet_more_math()

read_button()
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Interrupt 1/0

= Current solution

- Used in vendor
examples

- Recommended in
documentation

= 170 lines of C

%' RICE

15

on button press:
set_timer()

&
w

on timer expiratic‘
read_button()

w
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Interrupts in interpreters

time

[T
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Interrupts in interpreters

button
press
time v
>
) M Call

\

Interrupt handler: m
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Interrupts in interpreters

button
press

time v >
[

\ t

Interrupt handler: m
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Interrupts in interpreters

button

time

Reentrant interpreter

Int
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Interrupts in interpreters

button
press

o =
\ 4
Delayed interrupt handler: m
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Interrupts in interpreters

button

Might miss events ¢

Delayed
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Message bridging

N/S Light =

% E/W Light O
5 N/S Sensor + = Turn hardware events
i - °
= E/W Sensor _Z,‘ into software messages
S EMS Sensor > - Extend actor domain
=i e to hardware

- |IRQs on microkernels
% i ) - Su?;crlzltlon mf:cdel
e ti bridge ISR [§ - reads specity
S ’ hardware of interest
L o e e e
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Message bridging

time

[T

@ RlC E 23 rice computer architecture group



Message bridging

button
press

time v

EIme

<+
ySI @8pLiq
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Bridge interrupt handler

#define ALL PINS Oxff

volid GPIOInterruptHandler (unsigned long port) {
uint8 t values ;
/* clear all the interrupts for this port =*/

GPIOPinIntClear(port, ALL PINS);

/* read the value of the port =x/
values = GPIOPinRead(port, ALL PINS);

/* send it to the subscribers =/
bridge produce(GPIO BRIDGE, &values , sizeof(uint8 t));

Bridge Buffer
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Bridge interrupt handler

#define ALL PINS Oxff

volid GPIOInterruptHandler (unsigned long port) {
uint8 t values ;
/* clear all the interrupts for this port =*/
GPIOPinIntClear(port, ALL PINS);

/* read the value of the port =x/
values = GPIOPinRead(port, ALL PINS);

/* send it to the subscribers =/
bridge produce(GPIO BRIDGE, &values , sizeof(uint8 t));

| !
event

Bridge Buffer
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Message bridging

button
press

time v

EIme

<
-

ySI @8pLiq

event

Bridge Buffer
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Message bridging

button
press

\ 4
deliver
) M
v 4

(@) b] event

time

ySI @8pLiq

event

Bridge Buffer
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Message bridging

button
press

v
>
) M
v 4

(@) b] event

time
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Bridge Buffer
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Message bridging

- Two-phase bridging
- Copy data into bridge immediately
- ~4 microseconds
- No allocation

- Copy data from bridge “later”
- ~10s of milliseconds

- Allocate long-term storage
- When VM is not running

%
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Message bridging

- Debouncing:
- Polling: 17 lines of Python
- Interrupts: 141 lines of C
Ut I L - Bridges: 33 lines of Medusa

off On off - Zero impact on other
threads

Bou_nce Bounce
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Conclusions
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- All embedded systems are
concurrent

- Current solutions are
inadequate

= Actor model well-suited to
/0

- Polling-like simplicity

- Interrupt-like
performance
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