A Tool for Teaching Reverse
Engineering

Clark Taylor and Christian Collberg

Department of Computer Science,

University of Arizona

Why Teach Reverse Engineering?

* Maintaining old code

— Not related to security or obfuscation

Why Teach Reverse Engineering?

* Dissecting malicious code

Malicious N
Program
/

Identifiers

> Behavior

Attribution?

Why Teach Reverse Engineering?

* Analyzing reverse engineering vulnerabilities

Protected N
Program
/

Difficulty
Level

Behavior

Why Teach Reverse Engineering?

* Understanding obfuscation methods

Obfuscated N N Obfuscation
Program Patterns
/

Why Teach Reverse Engineering?

* Analyze and counter malware threats

* Protect software assets from man-at-the-end
(MATE) attacks

e Contribute to the field
e Malicious uses?

The Problem

* Generating and administering unique reverse
engineering exercises is difficult

For each student:
1. Generate problem
2. Obfuscate problem
3. Send problems
4. Grade problems

Alice

Generation

* Alice generates a problem for each student

Generate
Program

Obfuscate

Distribution

* Alice sends the problems to the students

L
BEN,

Grading

e Students submit answers to Alice

1 ir w i

The Problem

* Generating and administering unique reverse
engineering exercises is difficult

Student Environment Setup

e Students have problems getting started

1. Download OS 0
2. Configure VM

3. Install tools and dependencies
4. Get P’ onto VM

5.Solve P> — P

6. Turn in P

Our Solution

Automate exercise generation, with
randomization

Automate exercise administration
Automate environment setup

Automation, automation, automation

4.

5.

Desired Functionality

Administrative functions

Challenge generation

— Automated, random code generation
— Automated, random code obfuscation
Grading system

— Manual

— Automated

Environment distribution

— Static

— Dynamic

Data collection

Implementation Strategy

* Web application

— Easy for students to use
— Few dependencies; no client setup
— Accessible on the internet

e Student terminals

— Preconfigured environment
— Virtual or physical/device

System Usage

Server

|

Create Challenge
Tigress commands

System Usage

Server

Download Environment
Configured virtual machine

System Usage

Server

l

Download Challenge

Obfuscated file (P’)

System Usage

Server

|

Upload Answer

Reverse engineered file (P,)

System Usage

Server

Download Answers

Original files (P)
Answer files (P,)

System Usage

Server

|

Upload Grades

Grades

Obfuscation

* Tigress
— Operates on C language
— Source-to-source obfuscator
— Numerous transforms
— Randomization built in
— Includes code generation components

* Gcec compiler

Tigress Obfuscation Examples

Tigress

Build program with assets

Tigress

Obfuscate program

!
!
!

Tigress Obfuscation Examples

#include <stdio.h>
#include <stdlib.h>

void SECRET (unsigned 1long input[1]

{ ...}
int main(int argc,
{
unsigned long input[1]
unsigned long output[1]
int 15 ;
unsigned long value6t ;
int i7 ;

}

char*~*

, unsigned long output[1]
argv) |

.
4

.
’

i5 = 0;

while (i5 < 1) {
value6 = strtoul (argv[ib + 1], 0, 10);
input[i5] = wvalueb;
i5 ++;

}

SECRET (input, output);

i7 = 0;

while (17 < 1) {
printf ("$1lu\n", output[i7]);
i7 ++;

—

)

Tigress

Tigress

void SECRET (unsigned long i[1]

Tigress Obfuscation Examples

, unsigned long o[1l]) {

unsigned long s[4] ;

s[OUL]
s[1UL]

s[2UL]
s[3UL]

i[OUL] + 762537946UL;
i[OUL] | ((16601096UL << (s[OUL] % 16UL | 1UL)) |
(16601096UL >> (64 - (s[OUL] % 16UL | 1UL))));:
(i [OUL] ~ 643136481UL) ~ (s[OUL] + 292656718UL) ;
(i [OUL] << (((s[lUL] >> 4UL) & 15UL) | 1UL)) |
(i [OUL] >> (64 - (((s[1lUL] >> 4UL) & 15UL)

unsigned long 1 = OUL;
while (1 < 3UL) {
s [1UL]
s[1 + 1UL] = s[1l]; 1 += 2UL;

}

if ((s[OUL]

s [3UL]
} else {
s [2UL]

}
s[0UL]

o[0UL]

>> 1UL) & 7UL)

|I= (s[2UL] & 15UL) << 3UL;

| s[1UL]) > (s[2UL] | s[3UL])) {

|= (s[1UL] & 31UL) << 3UL;

= s[OUL]; s[3UL] |= (s[2UL] & 15UL) << 3UL;
s[2UL] ;

(s[O0UL] << (s[1lUL] % 8UL | 1UL)) <<

((((s[2UL] << (s[3UL] % 8UL | 1UL))
| 1U0L);

| 1UL)));

_—

Tigress

Tigress

Deployment

e System used for a ~35 student course
* Configured for two binary challenges

e Students answered several additional
guestions:

— What was the level of difficulty?
— How long did it take to solve the problem?

Results

e Students were able to use the system and
solve the easier problem

Difficulty Time Taken

12

2()
10
15 3
6

10
4
5 . 2

(-3 36

Easy Medinm Hard

e
9-12

12+

6-9

Future Work

Dynamic environments
— Docker

— Provisioner
Automated grading

— Simple token grading
— Input/output cases

— Natural language processing
— Code entropy

Data collection

— Syslog ng

— Splunk

— Custom built solutions
Visualization

Conclusion

* Reverse engineering is a valuable skill

* Teaching that skill typically involves a lot of
overhead

* Integrating Tigress with a webapp allowed us

to easily generate and administer randomized
exercises

Questions?

