
Clark	Taylor	and	Christian	Collberg
Department	of	Computer	Science,

University	of	Arizona

Why	Teach	Reverse	Engineering?

• Maintaining	old	code
– Not	related	to	security	or	obfuscation

Why	Teach	Reverse	Engineering?

• Dissecting	malicious	code

Malicious
Program

Tools

Identifiers

Behavior

Attribution?

Why	Teach	Reverse	Engineering?

• Analyzing	reverse	engineering	vulnerabilities

Protected
Program

Tools

Difficulty
Level

Behavior

Why	Teach	Reverse	Engineering?

• Understanding	obfuscation	methods

Obfuscated
Program

Tools

Obfuscation
Patterns

Why	Teach	Reverse	Engineering?

• Analyze	and	counter	malware	threats
• Protect	software	assets	from	man-at-the-end	
(MATE)	attacks

• Contribute	to	the	field
• Malicious	uses?

The	Problem

• Generating	and	administering	unique	reverse	
engineering	exercises	is	difficult

For each student:
1. Generate problem
2. Obfuscate problem
3. Send problems
4. Grade problems

Alice

Generation

• Alice	generates	a	problem	for	each	student

Obfuscate

P P’

Generate
Program

Asset

Distribution

• Alice	sends	the	problems	to	the	students

P0’

P1’ P2’
P3’

Grading

• Students	submit	answers	to	Alice

A0

A1 A2

A3

The	Problem

• Generating	and	administering	unique	reverse	
engineering	exercises	is	difficult

Student	Environment	Setup

• Students	have	problems	getting	started

1. Download OS
2. Configure VM
3. Install tools and dependencies
4. Get P’ onto VM
5. Solve P’ → P
6. Turn in P

?

Our	Solution

• Automate	exercise	generation,	with	
randomization

• Automate	exercise	administration
• Automate	environment	setup

• Automation,	automation, automation

Desired	Functionality
1. Administrative	functions
2. Challenge	generation

– Automated,	random	code	generation
– Automated,	random code	obfuscation

3. Grading	system
– Manual
– Automated

4. Environment	distribution
– Static
– Dynamic

5. Data	collection

Implementation	Strategy

• Web	application
– Easy	for	students	to	use
– Few	dependencies;	no	client	setup
– Accessible	on	the	internet

• Student	terminals
– Preconfigured	environment
– Virtual	or	physical/device

System	Usage

Create	Challenge
Tigress	commands

Server

System	Usage

Download	Environment
Configured	 virtual	machine

Server

System	Usage

Download	Challenge
Obfuscated	file	(P’)

Server

System	Usage

Upload	Answer
Reverse	engineered	 file	(Pa)

Server

System	Usage

Download	Answers
Original	files	(P)
Answer	files	(Pa)

Server

System	Usage

Upload	Grades
Grades

Server

Obfuscation

• Tigress
– Operates	on	C	language
– Source-to-source	obfuscator
– Numerous	transforms
– Randomization	built	in
– Includes	code	generation	components

• Gcc compiler

Tigress	Obfuscation	Examples
Tigress

P

Tigress

P’

Build	program	with	assets

Obfuscate	program

Tigress	Obfuscation	Examples
Tigress

P

Tigress

P’

#include ≤stdio.h>
#include ≤stdlib.h>
void SECRET(unsigned long input[1] , unsigned long output[1])
{ ... }
int main(int argc, char** argv) {
{

unsigned long input[1] ;
unsigned long output[1] ;
int i5 ;
unsigned long value6 ;
int i7 ;
}
i5 = 0;
while (i5 < 1) {

value6 = strtoul(argv[i5 + 1], 0, 10);
input[i5] = value6;
i5 ++;

}
SECRET(input, output);
i7 = 0;
while (i7 < 1) {

printf("%lu\n", output[i7]);
i7 ++;

}
}

Tigress	Obfuscation	Examples
Tigress

P

Tigress

P’

void SECRET(unsigned long i[1] , unsigned long o[1]) {
unsigned long s[4] ;

s[0UL] = i[0UL] + 762537946UL;
s[1UL] = i[0UL] | ((16601096UL << (s[0UL] % 16UL | 1UL)) |

(16601096UL >> (64 - (s[0UL] % 16UL | 1UL))));
s[2UL] = (i[0UL] ^ 643136481UL) ^ (s[0UL] + 292656718UL);
s[3UL] = (i[0UL] << (((s[1UL] >> 4UL) & 15UL) | 1UL)) |

(i[0UL] >> (64 - (((s[1UL] >> 4UL) & 15UL) | 1UL)));

unsigned long l = 0UL;
while (l < 3UL) {
s[1UL] |= (s[2UL] & 15UL) << 3UL;
s[l + 1UL] = s[l]; l += 2UL;

}
if ((s[0UL] | s[1UL]) > (s[2UL] | s[3UL])) {
s[3UL] |= (s[1UL] & 31UL) << 3UL;

} else {
s[2UL] = s[0UL]; s[3UL] |= (s[2UL] & 15UL) << 3UL;

}
s[0UL] = s[2UL];

o[0UL] = (s[0UL] << (s[1UL] % 8UL | 1UL)) <<
((((s[2UL] << (s[3UL] % 8UL | 1UL))
>> 1UL) & 7UL) | 1UL);

}

Deployment

• System	used	for	a	~35	student	course
• Configured	for	two	binary	challenges
• Students	answered	several	additional	
questions:
–What	was	the	level	of	difficulty?
– How	long	did	it	take	to	solve	the	problem?

Results

• Students	were	able	to	use	the	system	and	
solve	the	easier	problem

Future	Work
• Dynamic	environments

– Docker
– Provisioner

• Automated	grading
– Simple	token	grading
– Input/output	cases
– Natural	language	processing
– Code	entropy

• Data	collection
– Syslog	ng
– Splunk
– Custom	built	solutions

• Visualization

Conclusion

• Reverse	engineering	is	a	valuable	skill
• Teaching	that	skill	typically	involves	a	lot	of	
overhead

• Integrating	Tigress	with	a	webapp allowed	us	
to	easily	generate	and	administer	randomized	
exercises

Questions?

