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Why	Teach	Reverse	Engineering?

• Maintaining	old	code
– Not	related	to	security	or	obfuscation



Why	Teach	Reverse	Engineering?

• Dissecting	malicious	code
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Why	Teach	Reverse	Engineering?

• Analyzing	reverse	engineering	vulnerabilities
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Why	Teach	Reverse	Engineering?

• Understanding	obfuscation	methods
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Why	Teach	Reverse	Engineering?

• Analyze	and	counter	malware	threats
• Protect	software	assets	from	man-at-the-end	
(MATE)	attacks

• Contribute	to	the	field
• Malicious	uses?



The	Problem

• Generating	and	administering	unique	reverse	
engineering	exercises	is	difficult

For each student:
1. Generate problem
2. Obfuscate problem
3. Send problems
4. Grade problems

Alice



Generation

• Alice	generates	a	problem	for	each	student
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Distribution

• Alice	sends	the	problems	to	the	students
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Grading

• Students	submit	answers	to	Alice
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The	Problem

• Generating	and	administering	unique	reverse	
engineering	exercises	is	difficult



Student	Environment	Setup

• Students	have	problems	getting	started

1. Download OS
2. Configure VM
3. Install tools and dependencies
4. Get P’ onto VM
5. Solve P’ → P
6. Turn in P

?



Our	Solution

• Automate	exercise	generation,	with	
randomization

• Automate	exercise	administration
• Automate	environment	setup

• Automation,	automation, automation



Desired	Functionality
1. Administrative	functions
2. Challenge	generation

– Automated,	random	code	generation
– Automated,	random code	obfuscation

3. Grading	system
– Manual
– Automated

4. Environment	distribution
– Static
– Dynamic

5. Data	collection



Implementation	Strategy

• Web	application
– Easy	for	students	to	use
– Few	dependencies;	no	client	setup
– Accessible	on	the	internet

• Student	terminals
– Preconfigured	environment
– Virtual	or	physical/device



System	Usage

Create	Challenge
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System	Usage

Download	Environment
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System	Usage

Download	Challenge
Obfuscated	file	(P’)

Server



System	Usage

Upload	Answer
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System	Usage
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System	Usage

Upload	Grades
Grades

Server



Obfuscation

• Tigress
– Operates	on	C	language
– Source-to-source	obfuscator
– Numerous	transforms
– Randomization	built	in
– Includes	code	generation	components

• Gcc compiler



Tigress	Obfuscation	Examples
Tigress
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Tigress	Obfuscation	Examples
Tigress

P
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#include ≤stdio.h> 
#include ≤stdlib.h>
void SECRET(unsigned long input[1] , unsigned long output[1] )
{ ... }
int main(int argc, char** argv) {
{ 

unsigned long input[1] ;
unsigned long output[1] ;
int i5 ;
unsigned long value6 ;
int i7 ;
}
i5 = 0;
while (i5 < 1) {

value6 = strtoul(argv[i5 + 1], 0, 10);
input[i5] = value6;
i5 ++;

}
SECRET(input, output);
i7 = 0;
while (i7 < 1) {

printf("%lu\n", output[i7]);
i7 ++;

}
}



Tigress	Obfuscation	Examples
Tigress

P
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void SECRET(unsigned long i[1] , unsigned long o[1] ) { 
unsigned long s[4] ;

s[0UL] = i[0UL] + 762537946UL;
s[1UL] = i[0UL] | ((16601096UL << (s[0UL] % 16UL | 1UL)) | 

(16601096UL >> (64 - (s[0UL] % 16UL | 1UL))));
s[2UL] = (i[0UL] ^ 643136481UL) ^ (s[0UL] + 292656718UL);
s[3UL] = (i[0UL] << (((s[1UL] >> 4UL) & 15UL) | 1UL)) | 

(i[0UL] >> (64 - (((s[1UL] >> 4UL) & 15UL) | 1UL)));

unsigned long l = 0UL;
while (l < 3UL) {
s[1UL] |= (s[2UL] & 15UL) << 3UL;
s[l + 1UL] = s[l]; l += 2UL;

}
if ((s[0UL] | s[1UL]) > (s[2UL] | s[3UL])) {
s[3UL] |= (s[1UL] & 31UL) << 3UL;

} else {
s[2UL] = s[0UL]; s[3UL] |= (s[2UL] & 15UL) << 3UL;

}
s[0UL] = s[2UL];

o[0UL] = (s[0UL] << (s[1UL] % 8UL | 1UL)) << 
((((s[2UL] << (s[3UL] % 8UL | 1UL))
>> 1UL) & 7UL) | 1UL);

}



Deployment

• System	used	for	a	~35	student	course
• Configured	for	two	binary	challenges
• Students	answered	several	additional	
questions:
–What	was	the	level	of	difficulty?
– How	long	did	it	take	to	solve	the	problem?



Results

• Students	were	able	to	use	the	system	and	
solve	the	easier	problem



Future	Work
• Dynamic	environments

– Docker
– Provisioner

• Automated	grading
– Simple	token	grading
– Input/output	cases
– Natural	language	processing
– Code	entropy

• Data	collection
– Syslog	ng
– Splunk
– Custom	built	solutions

• Visualization



Conclusion

• Reverse	engineering	is	a	valuable	skill
• Teaching	that	skill	typically	involves	a	lot	of	
overhead

• Integrating	Tigress	with	a	webapp allowed	us	
to	easily	generate	and	administer	randomized	
exercises



Questions?


