Autonomic Management of Dynamically Partially Reconfigurable FPGA Architectures using Discrete Control

Xin An & <u>Eric Rutten</u> (INRIA), Jean-Philippe Diguet & Nicolas Le Griguer (Lab-STICC), Abdoulaye Gamatié (LIRMM)

June 26, 2013

Motivation	Background 000000	DPR FPGAs 00	System modelling as a DCS problem	Conclusion
Outline				

- 3 DPR FPGAs
- 4 System modelling as a DCS problem

Motivation	Background 000000	DPR FPGAs	System modelling as a DCS problem	Conclusion
Outline				

- 2 Background
- 3 DPR FPGAs
- 4 System modelling as a DCS problem

 Motivation
 Background 000000
 DPR FPGAs 00
 System modelling as a DCS problem
 Conclusion

 Autonomic computing on reconfigurable hardware
 Conclusion
 Conclusion
 Conclusion
 Conclusion

Controlling FPGAs as autonomic computing

- Field Programmable Gate Arrays (FPGAs)
- dynamically partially reconfigurable (DPR) FPGAs

Control techniques to design the MAPE-K loops

- model possible behaviours, and control objectives, separately
- classically continuous time dynamics and differential equations
- discrete control, events and states, Petri nets or automata

Discrete control for autonomic FPGAs

- systematic modelling framework application, tasks implementations, architecture
- Automata & Discrete Controller Synthesis (DCS)

Motivation	Background	DPR FPGAs	System modelling as a DCS problem	Conclusion
Outline				

2 Background

- FPGA-based architectures
- Reactive languages and Discrete Control
- Discrete control as MAPE-K

3 DPR FPGAs

4 System modelling as a DCS problem

Motivation	Background ●०००००	DPR FPGAs 00	System modelling as a DCS problem	Conclusion
FPGA-ba	sed archit	ectures		

Basic reconfigurable cell : programmable by bitstream

- Run-time partial reconfiguration : DPR FPGAs
- slower than ASICs, much faster than GP CPUs
- Management of reconfiguration : loading chosen bitstream

- reaction to input flows \rightarrow output flows
 - data-flow nodes and equations ; mode automata (FSM)
 - parallel (synchronous) and hierarchical composition

synchronous languages, (25+ years) tools: compilers (e.g., Heptagon), code generation, verification, ...

 Motivation
 Background coeoco
 DPR FPGAs co
 System modelling as a DCS problem
 Conclusion

 Discrete
 controller
 synthesis
 (DCS):
 principle

Goal

Enforcing a temporal property Φ on a system on which Φ does not yet hold a priori

 Motivation
 Background 00000
 DPR FPGAs 00
 System modelling as a DCS problem
 Conclusion

 Discrete controller synthesis (DCS): principle

Goal

Enforcing a temporal property Φ on a system on which Φ does not yet hold a priori

Principle (on implicit equational representation)

- State memory
- Trans transition function
- *Out* output function

 Motivation
 Background 00 • 000
 DPR FPGAs 00
 System modelling as a DCS problem
 Conclusion

 Discrete controller synthesis (DCS): principle

Goal

Enforcing a temporal property Φ on a system on which Φ does not yet hold a priori

Principle (on implicit equational representation)

 Motivation
 Background 00 • 000
 DPR FPGAs 00
 System modelling as a DCS problem
 Conclusion

 Discrete controller synthesis (DCS): principle

Goal

Enforcing a temporal property Φ on a system on which Φ does not yet hold a priori

Principle (on implicit equational representation)

1

- Trans transition function
- *Out* output function

- Partition of variables : controllable (Y^c) , uncontrollable (Y^u)
- Computation of a controller such that the controlled system satisfies Φ (<u>invariance</u>, reachability, attractivity, ...)

DCS tool: Sigali (H. Marchand e.a.)

- to each contract, associate controllable variables, local
- at compile-time (user-friendly DCS),

compute a controller for each component

• step and reset functions ; executable code : C, Java, ...

twotasks $(r_1, e_1, r_2, e_2) = a_1, s_1, a_2, s_2$ enforce not $(a_1 \text{ and } a_2)$

with c_1, c_2

$$(a_1, s_1) = \texttt{delayable}(r_1, c_1, e_1);$$

 $(a_2, s_2) = \texttt{delayable}(r_2, c_2, e_2)$

& G. Delaval & H. Marchand [ACM LCTES'10] [jDEDS13]

- autonomic MAPE-K
- flows : sensor observations to reconfiguration actions
- reactive language BZR used as DSL for decision

- FSM instanciation of MAPE-K
- exhibit state (observability)
- accept events or conditions (controllability)

Motivation	Background ○○○○●	DPR FPGAs	System modelling as a DCS problem	Conclusion
Lionaral	aigal archit	o oturo		

- hierarchical MAPE-K, through additional interfaces
- in components : composites using life-cycles of subcomponents
- implementation : *step*
 - synthesized and generated off-line
 - called at run-time in composite controller

Motivation	Background 000000	DPR FPGAs	System modelling as a DCS problem	Conclusion
Outline				

- 3 DPR FPGAs
 - Considered DPR FPGAs
 - Reconfiguration policy

Motivation	Background 000000	DPR FPGAs ●○	System modelling as a DCS problem	Conclusion
Considere	ed DPR FI	PGAs		

System architecture

- hardware : reconfigurable area divided into four tiles: A1 A4
- battery (load levels)
- task implementations : used tiles, WCET, power peak
- application software : directed, acyclic graph (DAG) of tasks

Reconfiguration choices

- unused tile Ai can be put into sleep mode
- between task implementations : from 1) to either 2) or 3)

Motivation	Background 000000	DPR FPGAs ○●	System modelling as a DCS problem 00000	Conclusion
Reconfig	uration po	olicy		

Separation of concerns, favoring re-use and variations

- description of possible behaviors
- specification of coordination policy

System objectives

I resource usage constraint:

exclusive uses of reconfigurable areas A1-A4;

energy reduction constraint:

switch areas to sleep mode when executing no task;

opwer peak constraint : stay below bound

constrained w.r.t battery levels;

Image: minimise power peak of hardware platform

Motivation	Background 000000	DPR FPGAs 00	System modelling as a DCS problem	Conclusion
Outline				

4 System modelling as a DCS problem

- Architecture behaviour
- Task execution behaviour
- Global system behaviour model

Motivation	Background	DPR FPGAs

System modelling as a DCS problem ••••• Conclusion

Architecture behaviour

Architecture

- four reconfigurable tiles A1, A2, A3, A4
 - modes : active, sleep
 - controllable switches

Battery

observer

- states H (high), M (medium) and L (low)
- input from battery sensor

Follows the DAG of tasks

systematic construction of model from DAG

- inputs : request, task finish notifications
- outputs : start of tasks
- states : currently active tasks

Motivation	Background 000000	DPR FPGAs	System modelling as a DCS problem ००●००	Conclusion
Tack or	ocution bo	haviour		

Example for task T_A

- 2 implementations
- waiting state (delayed)
- control on delay, and on implementation choice

Local costs on states

- rs ∈ 2^{RA} : used tiles (architecture resources)
- wt : WCET
- pp : power peak

Motivation	Background 000000	DPR FPGAs 00	System modelling as a DCS problem ○○●○	Conclusion		
Global system behaviour model						

Parallel composition of control models

 $\mathcal{S} = RM_1|...|RM_4|BM|TM_A|...|TM_D|SdI$

- reconfigurable tiles RM1-RM4
- battery BM
- scheduler Sdl (from DAG)
- tasks TM_A - TM_D

Global costs, on global state $q = (q_1, ..., q_n)$

defined from the local ones

- used resources: union of used resources associated with the local states, i.e., $rs(q) = \bigcup rs(q_i), 1 \le i \le n$;
- power peak: the sum of values associated with the local states, i.e., $pp(q) = \sum (pp(q_i), 1 \le i \le n);$

Motivation	Background 000000	DPR FPGAs	System modelling as a DCS problem ○○○○●	Conclusion
System o	bjectives			

Enforce invariance w.r.t. subset of states where :

- (1) exclusive uses of reconfigurable tiles by tasks: $\forall q_i, q_j \in q, i \neq j$, that $rs(q_i) \bigcap rs(q_j) = \emptyset$;
- (2') switch tile A_i to sleep mode, when executing no task: $\nexists q_i \in q, A_i \in rs(q_i) \Rightarrow act_i = false;$
- (2") switch tile A_i to active mode when executing task(s): $\exists q_i \in q, Ai \in rs(q_i) \Rightarrow act_i = true;$
- (3) battery-level constrained power peak (thresholds P_0, P_1, P_2): $pp(q) < P_0$ (resp. P_1 and P_2)

Experimental validation

- video processing system, ML605 board from Xilinx with FPGA
- BZR used to encode models and objectives, and generate C code, integrated in runtime manager

Motivation	Background 000000	DPR FPGAs 00	System modelling as a DCS problem	Conclusion
Outline				

- 2 Background
- 3 DPR FPGAs
- 4 System modelling as a DCS problem

Motivation	Background 000000	DPR FPGAs 00	System modelling as a DCS problem	Conclusion	
Conclusions & perspectives					

DPR FPGAs as autonomic computing

- systematic modeling framework for DPR FPGA
- LTSs and automatic controller generation using DCS
- experimental validation

Perspectives

• Domain-Specific Language (DSL)

automated generation of models, patterns integration in design flow, executable code

- richer model, e.g. reconfiguration costs
- DCS : optimal, modular, quantitative, distributed controllers
- more complete experiment ongoing on video FPGA