Errata Slip

Proceedings of the 2017 USENIX Annual Technical Conference

In the paper “StreamBox: Modern Stream Processing on a Multicore Machine” by Hongyu Miao and Heejin Park,
Purdue ECE; Myeongjae Jeon and Gennady Pekhimenko, Microsoft Research; Kathryn S. McKinley, Google; Felix
Xiaozhu Lin, Purdue ECE (Thursday session, “Multicore,” pp. 617-629 of the Proceedings) the text at the top of
page 621 in the left-hand column does not display correctly.

Original text

WM_CONSUMED After D,,, consumes the end wal
mark, it guarantees that it has flushed all derived st
and the end watermark to the downstream contai
and Dywn may be destroyed.

WM_CANCELLED Dyp chooses not to emit the end 1
termark for the (potential) epoch. Section 5.2
scribes how we support windowing transforms by ¢
celling watermarks and merging containers.

Lock-free container processing Containers are lo
free to minimize synchronization overhead. We instas
ate the end watermark as an atomic variable that enfor
acquire-release memory order. It ensures that Dgyn o
serves all Dy, evaluators” writes to the container’s |
claimed bundle set before observing D,;’s write of
end watermark. The unclaimed bundle set is a concurr
data structure that aggressively weakens the ordering
mantics on bundles for scalability. Examples of ot
such data structures include non-linearizable lock-f

queues [13] and relaxed priority queues [4]. We furtner
exploit this flexibility to make the bundle set NUMA-

aware, as discussed in Section 7.1.

Corrected text

WM_CONSUMED After D,,, consumes the end water-
mark, it guarantees that it has flushed all derived state
and the end watermark to the downstream container
and D,yn may be destroyed.

WM_CANCELLED Dp chooses not to emit the end wa-
termark for the (potential) epoch. Section 5.2 de-
scribes how we support windowing transforms by can-
celling watermarks and merging containers.

Lock-free container processing Containers are lock-
free to minimize synchronization overhead. We instanti-
ate the end watermark as an atomic variable that enforces
acquire-release memory order. It ensures that Doun ob-
serves all Dy, evaluators’ writes to the container’s un-
claimed bundle set before observing D,;’s write of the
end watermark. The unclaimed bundle set is a concurrent
data structure that aggressively weakens the ordering se-
mantics on bundles for scalability. Examples of other
such data structures include non-linearizable lock-free
queues [13] and relaxed priority queues [4]. We further
exploit this flexibility to make the bundle set NUMA-
aware, as discussed in Section 7.1.



