
 ;login: OCTOBER 2011 Conference Reports 81

Server-side Security

Summarized by Ioannis Papagiannis (ip108@doc.ic.ac.uk)

GuardRails: A Data-Centric Web Application Security
Framework
Jonathan Burket, Patrick Mutchler, Michael Weaver, Muzzammil Zaveri,

and David Evans, University of Virginia

Web frameworks significantly facilitate the creation of Web
applications. However, they do little to facilitate the develop-
ment of applications that are secure by design. In reality, lots
of applications suffer from known, persistent types of vulner-
abilities. Popular examples are cross-site scripting, SQL
injection, and data disclosure vulnerabilities. For Rails Web
applications, the root cause of such vulnerabilities is that
developers have to consistently attach checks to controllers
every time controllers manipulate user data. When develop-
ers forget these checks, they introduce vulnerabilities. The
key idea of GuardRails is to associate data dissemination
policies with the data that they protect and have the frame-
work enforce the policies automatically.

GuardRails does source-to-source code transformations
of Rails applications after they have been annotated with
policies. There are two types of policies that GuardRails can
enforce: access control policies and taint tracking policies.
Policies can contain arbitrary code, and GuardRails supports
a special syntax to define them. There are various default
policies that can be used by application developers with mini-
mal effort. For taint tracking policies, GuardRails can asso-
ciate and track multiple policies per string, supporting up
to character-level tainting. In order to support fine-grained
sanitization according to the precise HTML context where
data are used, GuardRails invokes the sanitization opera-
tions after the HTTP response has been fully generated. The
authors tested GuardRails with existing vulnerable Rails
applications of different sizes. Jonathan Burket reported that
GuardRails prevented all vulnerabilities they tested it with.
However, in terms of performance, GuardRails reduced the
sustainable rate of transactions per second down to one-
fourth of the rate of the original applications. Most of the
overhead can be attributed to character-level taint tracking.
They plan to improve performance by implementing most
taint tracking routines inside the Ruby interpreter.

The Q&A mainly involved questions about how existing
applications are affected by GuardRails. Jonathan responded
that if the policies are written correctly, then GuardRails
can avoid repeating access control operations and redundant
sanitization. He also mentioned that the current prototype of
GuardRails is not optimized for performance and, therefore,
he sees a lot of room for improvement there.

user attention to accomplish this task and it uses a linear
programming approach to adapt to changing conditions.

The idea is to introduce devices to PodBase once and then
let the system figure out how to replicate files. An off-the-
shelf LP solver is used to generate a multi-step plan (e.g.,
copy file A to B, copy C to A) from a set of actions, goals, and
reconciled metadata (including connection history and ver-
sion vectors). One particular feature detailed in the talk was
an “automatic sneaker net,” where a laptop that frequently
moves between, for example, a PC at home and a desktop at
work is used to carry replicas of files from one machine to
the other. PodBase works across a wide range of devices and
supports plugins, which can implement specific strategies
for synchronizing data or backup. The presented evaluation
results included a 30-day user study involving 10 households
with 25 devices. It showed that PodBase can indeed use oth-
erwise unused storage to increase the replication count for
files (without user interaction).

Can one prevent certain files from showing up on other
devices? The system is flexible in this regard, as plugins or
backlists can be used for that. Making sure that files are
encrypted before being pushed to cloud storage is possible,
too. An attendee asked if bandwidth can be capped. Yes, users
asked for this. Asked about whether users continue to use the
system after the study ended, Ansley replied that they did for
some time, but then stopped because support was no longer
available. Why was an LP solver necessary? They first used a
greedy approach, but automatic sneakernet was not possible
when the available space in a device filled up—the LP solver
was more capable in resolving such situations.

2nd USENIX Conference on Web Application
Development (WebApps ’11)

Portland, OR
June 15–16, 2011

Joint ATC, WebApps, and HotCloud Keynote
Address

An Agenda for Empirical Cyber Crime Research
Stefan Savage, Director of the Collaborative Center for Internet

Epidemiology and Defenses (CCIED) and Associate Professor, UCSD

See the 2011 USENIX Annual Technical Conference report
for this session.

 82 ;login: VOL. 36, NO. 5

cannot control how these services use the data. At a high
level, this violates the least-privilege principle. In their paper
the authors suggest the concept of Preservers, proxy objects
that encapsulate user data and expose a secure API for data
access. The approach targets applications that only access
user data via a well-defined interface, rather than via direct
raw access, but they claim that this is the norm for many
real-world Web services. The client, instead of releasing his
data, sets up a custom Preserver that connects to the service
and implements arbitrary access control policies. Preservers
may process the data they enclose and may also filter them to
remove information that can identify the user. There are both
stateless and stateful versions of Preservers.

Preservers may execute either in a third-party server that
is trusted by both parties or be co-located with the user or
the service. This flexibility avoids limitations placed by
dominant service providers and enables the user to select
an appropriate placement strategy according to his perfor-
mance and security requirements: a trusted third party may
offer better security, but co-location with the service offers
reduced latency. To achieve secure co-location of Preserv-
ers with Web services, the authors suggest a Preserver
implementation that relies on separate VMs for isolation.
For the evaluation, the authors used three representative
applications (day-trading, targeted advertising, and secure
payments) and did micro-benchmarks to measure the
latency overhead that the different Preserver placement
options introduce. Their results show that a trusted third-
party placement is the most secure but results in an order of
magnitude higher latency compared to either client-side or
server-side co-location.

In the Q&A, people worried about the latency of the third-
party placement strategy. Byung-Gon suggested that latency
can be improved by reducing the physical distance to the
Preserver’s host. He also said that their approach enables
smaller Web sites to access user data that users would
not trust otherwise. Another open question is how to find
a proper interface for the Preserver, as this is not always
straightforward.

Researchers’ Workbench
Summarized by Veena Udayabhanu (veena@cs.umass.edu)

BenchLab: An Open Testbed for Realistic Benchmarking
of Web Applications
Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant

Shenoy, University of Massachusetts Amherst

Web applications have evolved from serving just static
content to dynamically generating Web pages. Modern Web
2.0 applications include JavaScript and AJAX technologies

PHP Aspis: Using Partial Taint Tracking to Protect
Against Injection Attacks
Ioannis Papagiannis, Matteo Migliavacca, and Peter Pietzuch, Imperial

College London

Modern Web applications rely on sanitization functions to
avoid injection attacks. A sanitization function transforms
user-provided strings so that the user cannot change the
semantics of the operations that the Web application invokes.
Developers often forget to call these functions and, by doing
so, they introduce injection vulnerabilities. Past research
has shown that taint tracking is effective in preventing such
vulnerabilities: it can invoke sanitization functions auto-
matically and use the taint information to sanitize the exact
string characters that originate from the user. However, it is
not supported by PHP.

Ioannis Papagiannis introduced PHP Aspis, a taint track-
ing system for existing PHP applications. PHP Aspis does
taint tracking at the source-code level, by transforming the
application scripts to propagate taint explicitly. This does not
require support from the official interpreter or the mainte-
nance of a custom interpreter. However, the transformations
replace efficient low-level PHP operations with more com-
putationally expensive counterparts (e.g., the concatenation
operation is replaced by a function call that also propagates
taint), and this reduces performance. To improve perfor-
mance, the authors suggest partial taint tracking, i.e., to
track taint only in the most vulnerable parts of Web applica-
tions. Ioannis supported their approach using the Wordpress
example, where most past injection vulnerabilities involved
plugins and not the Wordpress core. PHP Aspis separates
application code in tracking and non-tracking code: the for-
mer is protected from injection attacks, but the latter is not.

In the Q&A, people wondered how PHP Aspis handles the
dynamic features of PHP. Ioannis responded that PHP Aspis
is also invoked at runtime to process dynamically generated
code and inspect dynamic function calls. Another question
concerned the separation between tracking and non-tracking
code. Ioannis clarified that this separation is decided by the
application’s administrator and that the criteria for the sepa-
ration may vary according to where injection vulnerabilities
are expected to occur.

Secure Data Preservers for Web Services
Jayanthkumar Kannan, Google Inc.; Petros Maniatis, Intel Labs; Byung-

Gon Chun, Yahoo! Research

Users trust services with large quantities of their sensitive
data, a situation that can result in large-scale data leaks if the
service gets attacked. Byung-Gon Chun suggested that the
root cause of the problem is that users provide to centralized
services complete access over their data. As a result, users

 ;login: OCTOBER 2011 Conference Reports 83

Resource Provisioning of Web Applications in
Heterogeneous Clouds
Jiang Dejun, VU University Amsterdam and Tsinghua University Beijing;

Guillaume Pierre, VU University Amsterdam; Chi-Hung Chi, Tsinghua

University Beijing

Emmanuel Cecchet presented this paper on behalf of Jiang
Dejun, because Jiang had problems getting his US visa. In
this work, the authors said that provisioning Web applica-
tions in a cloud that consists of heterogeneous machines is
tough. The performance of these applications is the main
concern. When the same program was run on 30 small
instances of Amazon EC2 servers, they saw different perfor-
mances on each of the systems.

The authors say there are two simple solutions to this prob-
lem: ignore the heterogeneous resource factors and apply
current resource provisioning to make a decision, or profile
each of the VM instances at each tier to make a decision
(extremely time-consuming). Instead, they propose a novel
resource provisioning technique consisting of five steps:
(1) use a reference application for calibration; (2) correlate
resource demands of reference applications and tier services
on the calibration instance; (3) profile new instances with
the referenced application; (4) check the performance on the
new instance; and (5) apply “what-if” technique to predict the
performance when a new instance is added. They showed the
evaluation of their technique using TPC-W on EC2 and com-
pared the results they got against standard techniques such
as homogeneous provisioning. They concluded that profiling
new instances with reference applications can be used to pro-
vision a Web application on a heterogeneous cloud platform.

In the ensuing discussion (rather than Q&A, since the
authors weren’t around to answer questions) the one thing
most people agreed on was that checking which tier is the
bottleneck is a better technique than just seeing the applica-
tion performance or profiling VM instances.

C3: An Experimental, Extensible, Reconfigurable
Platform for HTML-based Applications
Benjamin S. Lerner and Brian Burg, University of Washington; Herman

Venter and Wolfram Schulte, Microsoft Research

Ben Lerner said that the focus of their research was on the
client side of Web applications and then described what the
client side of a Webapp behaves like. He mentioned the fac-
tors that make Web applications so “Webby” as follows: the
code is always up-to-date; the code mainly comprises HTML,
CSS, and a few JavaScripts; there is an option to view the
source; and it has remixability, the ability to be combined,
extended, and customized. He then explained that browser
extensions are basically pieces of code that are written in

that manage complex interactions between the client and the
server. Currently, widely used benchmarks such as TPC-W
and RUBiS rely on browser emulators that only mimic basic
network functionality but cannot emulate other complex
interactions that today’s browsers possess, such as JavaS-
cript processing. They use static load distribution. Also, the
fact that most benchmarking experiments are only carried
out in a LAN environment poses several questions about the
accuracy of the results obtained, because the real latencies
seen by geographically distributed users are not taken into
account.

All these facts scream that Web applications have evolved but
benchmarks have not! There are various factors that impact
server performance, such as typing speed and the state size
on the server. Emmanuel Cecchet presented BenchLab, an
open testbed designed to address these issues.

BenchLab captures real-application workload, which is then
replayed using real Web browsers, and detailed results are
stored in the benchmark repository. The benchmark reposi-
tory also can store virtual machines of applications under
test, test traces, configurations, and results. This is useful
in repeating experiments and comparing results. Capturing
real traces can be done at the browser, proxy, or httpd level,
depending on one’s needs. Separating the generation and
injection of workload is a key concept of BenchLab, and the
BenchLab Webapp itself is a JEE Web application with an
embedded database and repository.

In terms of the results obtained, we have seen the difference
between using emulators and real browsers on server utiliza-
tion. We have also seen the effects of JavaScript processing
on the server workload. Finally, we have compared the effects
of LAN versus WAN load injection.

One audience member asked how we deal with non-deter-
ministic behavior of personalized Web pages such as some-
one’s profile page on Facebook. We handle it by using HTML
comparison. The repository can also contain the complete
HTML responses generated by the server and we can use this
to compare results between successive experiments. Another
asked how they distinguish between real URLs and ones
automatically generated by JavaScripts and style sheets. It
is done by using the referrer field in the httpd logs and some
intelligent processing.

 84 ;login: VOL. 36, NO. 5

For their evaluation, the authors tested a lot of Chrome
extensions and Android Market applications. They catego-
rized the extensions and the applications according to the
dangerousness of the permissions that they requested. For
Chrome, only 3% of the extensions requested the ability to
run native code and another 50% asked for a significant num-
ber of dangerous permissions. For Android, most applications
use fewer than four dangerous permissions. However, only
9% of Chrome extensions and 10% of Android applications
do not ask for any permissions, and this can result in warn-
ing fatigue to the end users. Overall, David argued that the
permissions system is better than the traditional overprivi-
leged approach, as most extensions and applications are now
significantly more constrained than before.

The Q&A triggered a lively discussion. What is the correct
permission granularity? They do not know, but the granular-
ity of permissions is important as it can reduce the frequency
of warning prompts. Since a lot of users may consent to any
warning, can we be optimistic for the future of permission
systems? Yes, because a vocal minority of users who care
about security will push the developers to only ask for the
permissions they really need or to justify their requirements.

Experiences on a Design Approach for Interactive Web
Applications
Janne Kuuskeri, Tampere University of Technology

Current Web applications are developed with technologies
more suited for traditional Web pages. Lots of Web requests
waste bandwidth, as they propagate client data such as
views multiple times. On the server side, application state,
client state, and views are all mixed to generate the correct
reply. Different, fragmented technologies such as JSPs, CSS,
JavaScript, and HTML are all used for a single page. This
makes good software patterns very hard to apply. Model-
View-Controller (MVC) is helpful, but multiple vendors use
implementations that, although similar, are sufficiently dif-
ferent to complicate Web development.

To facilitate Web application design, Janne Kuuskeri sug-
gested two ideas: (1) implement the whole MVC stack in the
client’s Web browser with JavaScript, and (2) have the Web
server expose a RESTful API that all clients will use. Web
applications will be single pages that load once the necessary
scripts from the server arrive and then issue AJAX queries
according to the client’s actions. This decouples the Web
client from the Web service, allows native applications to use
the same API as the Web front end, and facilitates security
and error handling. With a suitable JavaScript framework,
developers do not even have to worry about HTML and CSS.

order to customize browsers dynamically at runtime; these
are required in order to experience new features as closed
systems but are not sufficient for researchers who want to try
new things.

The thinning barrier between Web applications and brows-
ers and the slowly evaporating role of browsers prompted
the development of the C3 framework. The goal of C3, which
is a reconfigurable platform for HTML-based applications,
is to make experiments with extensions that facilitate
research. They followed a bottom-up approach to building
C3, comprising design choice, layout tree structure, language
bindings, extensible parser, and overlays similar in spirit to
Firefox overlays. Ben demonstrated a PowerPoint application
designed as a Webapp. He also explained that, as part of the
future work, they plan to add conflict detection of extensions,
security monitoring, pushing the limits of HTML5, and new
user interface ideas to their framework.

Emmanuel Cecchet asked whether they expect to see C3
portability on iPhone or Android. Since more and more appli-
cations are becoming like a Web application platform, they
will be treated like any Web application. Another questioner
pointed out that most people are terrible at making UIs that
are easy to use. Given this, will having such frameworks
help? Ben answered that extensions don’t become popular if
they break the UI.

Lessons and Experience
Summarized by Ioannis Papagiannis (ip108@doc.ic.ac.uk)

The Effectiveness of Application Permissions
Adrienne Porter Felt, Kate Greenwood, and David Wagner, University of

California, Berkeley

Traditional operating systems associate permissions with
users, and this leads to overprivileged applications. Instead,
modern mobile operating systems such as iOS and Android
use fine-grained permission systems. Each application
requests a set of privileges that the user has to approve.
This can happen either at runtime or at installation time. In
theory, a permission system can make users aware of what
the applications they install can do. Moreover, fine-grained
permissions can limit the impact of vulnerabilities of benign
but buggy applications. However, this assumes that applica-
tions do not request more permissions than those they really
need and that the permission system’s design enables useful
applications using only a few permissions. So, are modern
permission systems effective? This paper, presented by David
Wagner, attempted to answer this question by studying exist-
ing platforms that use fine-grained permissions.

 ;login: OCTOBER 2011 Conference Reports 85

Joint ATC and WebApps Invited Talk

Helping Humanity with Phones and Clouds
Matthew Faulkner, graduate student in Computer Science at Caltech, and

Michael Olson, graduate student in Computer Science at Caltech

See the 2011 USENIX Annual Technical Conference report
for this session.

Panel: The Future of Client-Side Web Apps
Moderator: Michael Maximilien, IBM Research Panelists: Patrick

Chanezon, Google, Inc.; Charles Ying, Flipboard, Inc.; Erik Meijer,

Microsoft Corp.; Raffi Krikorian, Twitter, Inc.

No report is available for this session.

Extending and Protecting the Client

Integrating Long Polling with an MVC Web Framework
Eric Stratmann, John Ousterhout, and Sameer Madan, Stanford

University

Detecting Malicious Web Links and Identifying Their
Attack Types
Hyunsang Choi, Korea University; Bin B. Zhu, Microsoft Research Asia;

Heejo Lee, Korea University

Maverick: Providing Web Applications with Safe and
Flexible Access to Local Devices
David W. Richardson and Steven D. Gribble, University of Washington

No reports are available for this session.

Joint ATC and WebApps Invited Talk

Software G Forces: The Effects of Acceleration
Kent Beck, Facebook, Inc.

See the 2011 USENIX Annual Technical Conference report
for this session

The limitations of the approach are the lack of support from
existing Web frameworks and the reduced ability to crawl the
resulting application for search purposes. This architecture
is used in Valvomo, a production system in Finland’s trans-
portation sector that Janne demoed.

Exploring the Relationship Between Web Application
Development Tools and Security
Matthew Finifter and David Wagner, University of California, Berkeley

Modern Web development is characterized by an immense
number of choices: programming languages, frameworks,
template libraries, etc. But how should one choose? Are they
all equal? The goal of this paper, presented by Matthew
Finifter, was to evaluate the security of different platforms.
For this, the authors used a data set from a programming
contest. Nine teams of similarly experienced developers were
given the same specification to create a Web application in
30 hours. Developers were free to select their own tools and
languages.

Given these nine implementations (three in Java, three in
PHP, and three in Perl), the authors did black-box penetration
testing and manual security audits to discover vulnerabili-
ties. Matthew reported that there is no statistically signifi-
cant association between the language and the number of
vulnerabilities of each implementation. The authors also
studied the association between the existence of framework-
provided security features and the number of vulnerabilities
found for each implementation. Again, there was no sig-
nificant association for XSS or SQL Injection but there was
for Cross-Site Request Forgery and Session Management
vulnerabilities. Overall, they report that framework-provided
security features do have a measurable effect on the number
of vulnerabilities, but only when the feature is fully auto-
matic and does not require the developers to understand it
and use it correctly. The authors also report that for all three
languages, there is framework support to automatically pre-
vent all types of the vulnerabilities that they identified, but
this support was not always used by the developers.

Matthew was asked to estimate the total sample implemen-
tations that would have been required to generate statisti-
cally significant results. He replied that he preferred to audit
applications using more samples of smaller and simpler
implementations over fewer samples of more complicated
ones. He also mentioned that developers should not be
blamed for the increased numbers of vulnerabilities; instead,
the community should focus on providing fully automatic
security features for most popular Web frameworks.

