
 ;login: AUGUST 2011 37

PROGRAMMING

Clusters of commodity servers have become a major computing platform, powering
both large Internet services and a growing number of data-intensive enterprise
and scientific applications . To reduce the challenges of building distributed
applications, researchers and practitioners have developed a diverse array of new
software frameworks for clusters . For example, frameworks such as memcached

Mesos
Flexible Resource Sharing for the Cloud

B E N J A M I N H I N D M A N , A N D Y K O N W I N S K I , M A T E I Z A H A R I A ,
A L I G H O D S I , A N T H O N Y D . J O S E P H , R A N D Y H . K A T Z , S C O T T S H E N K E R ,
A N D I O N S T O I C A

Benjamin Hindman is a

fourth-year PhD student at

the University of California,

Berkeley. Before working on

resource management for cluster computing,

he worked on resource management for single-

node parallel computing. His interests include

operating systems, distributed systems,

programming languages, and all the ways they

intersect.

benh@eecs.berkeley.edu

Andy Konwinski is a PhD

student in computer science

at the University of California,

Berkeley, who has worked on

tracing and scheduling in distributed systems

such as Hadoop and Mesos.

andyk@berkeley.edu

Matei Zaharia is a fourth-

year graduate student at

the University of California,

Berkeley, working with

Scott Shenker and Ion Stoica on topics in

cloud computing, operating systems, and

networking. He is also a committer on Apache

Hadoop. He got his undergraduate degree at

the University of Waterloo in Canada.

matei@eecs.berkeley.edu

Ali Ghodsi got his PhD

from KTH Royal Institute of

Technology in 2007. He is

on leave from his position as

an assistant professor at KTH and has been

visiting the University of California, Berkeley,

since 2009. His interests include cloud

computing, distributed computing, and micro-

economic applications in computer science.

alig@cs.berkeley.edu

Anthony D. Joseph is a

Chancellor’s Associate

Professor in Electrical

Engineering and Computer

Science at the University of California,

Berkeley. He is developing adaptive techniques

for cloud computing, network and computer

security, and security defenses for machine-

learning–based decision systems. He also co-

leads the DETERlab testbed, a secure scalable

testbed for conducting cybersecurity research.

adj@eecs.berkeley.edu

Randy H. Katz is the United

Microelectronics Corporation

Distinguished Professor

in Electrical Engineering

and Computer Science at the University of

California, Berkeley, where he has been on the

faculty since 1983. His current interests are

the architecture and design of modern Internet

Datacenters and related large-scale services.

randy@cs.Berkeley.edu

Scott Shenker spent his

academic youth studying

theoretical physics but soon

gave up chaos theory for

computer science. Continuing to display a

remarkably short attention span, over the years

he has wandered from computer performance

modeling and computer networks research

to game theory and economics. Unable to

hold a steady job, he currently splits his time

between the University of California, Berkeley,

Computer Science Department and the

International Computer Science Institute.

shenker@icsi.berkeley.edu

Ion Stoica is an Associate

Professor in the EECS

Department at the University

of California, Berkeley, where

he does research on cloud computing and

networked computer systems. Past work

includes the Chord DHT, Dynamic Packet State

(DPS), Internet Indirection Infrastructure (i3),

declarative networks, replay-debugging, and

multi-layer tracing in distributed systems.

His current research includes resource

management and scheduling for data centers,

cluster computing frameworks for iterative

and interactive applications, and network

architectures.

istoica@eecs.berkeley.edu

 38 ;login: VOL. 36, NO. 4

[4] make accessing large datasets more efficient, while frameworks such as
Hadoop [1] and MPI [6] simplify distributed computation .

Unfortunately, sharing a cluster efficiently between two or more of these frame-
works is difficult . Many operators statically partition their clusters at physical
machine granularities, yielding poor overall resource utilization . Furthermore,
static partitioning makes it expensive to share big datasets between two comput-
ing frameworks (e .g ., Hadoop and MPI): one must either copy the data into a sepa-
rate cluster for each framework, consuming extra storage, or have the frameworks
read it across the network, reducing performance .

This article introduces Mesos, a platform that enables fine-grained, dynamic
resource sharing across multiple frameworks in the same cluster . For example,
using Mesos, an organization can simultaneously run Hadoop and MPI jobs on the
same datasets, and have Hadoop use more resources when MPI is not using them
and vice versa . Mesos gives these and other frameworks a common interface for
accessing cluster resources to efficiently share both resources and data .

In designing Mesos, we sought to make the system both flexible enough to support
a wide range of frameworks (and maximize utilization by pooling resources across
all these frameworks), and highly scalable and reliable (to be able to manage large
production clusters) . Specifically, we had four goals:

 High utilization: share resources dynamically as the demand of each applica-
tion changes

 Scalability: support tens of thousands of machines and hundreds of concurrent
jobs

 Reliability: recover from machine failures within seconds
 Flexibility: support a wide array of frameworks with diverse scheduling needs

Mesos achieves these goals by adopting an application-controlled scheduling
model . The Mesos core is only responsible for deciding how many resources each
framework should receive (based on an operator-selected policy such as priority or
fair sharing), while frameworks decide which resources to use and which compu-
tations to run on them, using a mechanism called resource offers . This design has
the dual benefit of giving frameworks the flexibility to schedule work based on
their needs and letting the Mesos core be simple, scalable, and robust . Indeed, we
show that Mesos scales to 50,000 nodes, recovers from master failures in less than
10 seconds, and lets applications achieve nearly perfect data locality in scheduling
their computations .

Finally, Mesos provides important benefits even to organizations that only use
one cluster computing framework . First, an organization can use Mesos to run
multiple, isolated instances of the framework on the same cluster (e .g ., to isolate
production and experimental Hadoop workloads), as well as multiple versions
of the framework (e .g ., to test a new version) . Second, Mesos allows developers
to build specialized frameworks for applications where general abstractions like
MapReduce are inefficient, and have them coexist with current systems . Later in
this article we describe a specialized framework we developed for iterative applica-
tions and interactive data mining called Spark, which can outperform Hadoop by
a factor of 30 for these workloads . We hope that other organizations also leverage
Mesos to experiment with new cluster programming models .

Mesos began as a research project at UC Berkeley and is now open source under the
Apache Incubator . It is actively being used at Twitter, Conviva, UC Berkeley, and
UC San Francisco .

 ;login: AUGUST 2011 Mesos 39

Mesos Architecture

Mesos enables efficient resource sharing across frameworks by giving them a com-
mon API to launch units of work, called tasks, on the cluster . A task typically runs
on a slice of a machine, within a resource allocation chosen by the framework (e .g .,
1 CPU core and 2 GB RAM) . Mesos isolates tasks from each other using OS facili-
ties like Linux Containers [2] to ensure that a runaway task will not affect other
applications .

To support a wide range of frameworks while remaining scalable and robust,
Mesos employs an application-controlled scheduling model . Mesos decides how
many resources each framework should receive according to an organization-
defined policy such as fair sharing . However, each framework is responsible for
dividing its work into tasks, deciding which tasks to run on each machine, and,
as we shall explain, selecting which machines to use . This lets the frameworks
perform application-specific placement optimizations: for example, a MapReduce
framework can place its map tasks on nodes that contain their input data .

Figure 1 shows the architecture of Mesos . The system has a fault-tolerant mas-
ter process that controls slave daemons on each node . Each framework that uses
Mesos has a scheduler process that registers with the master . Schedulers launch
tasks on their allocated resources by providing task descriptions . Mesos passes
these descriptions to a framework-specific executor process that it launches on
slave nodes . Executors are also reused for subsequent tasks that run on the same
node, to amortize initialization costs . Finally, Mesos passes status updates about
tasks to schedulers, including notification if a task fails or a node is lost .

Figure 1: Mesos architecture, showing two running frameworks (Hadoop and MPI)

Mesos uses a mechanism called resource offers to let frameworks choose which
resources to use . When resources on a machine become free, Mesos offers them to
each framework scheduler in turn, in an order defined by the cluster’s allocation
policy (e .g ., starting with the framework furthest below its fair share) . Each frame-
work may accept the resources and launch a task using some of them, or reject the
resources if, for example, it has no data on that machine . Refusing resources keeps
the framework at the front of the allocation queue, ensuring that it is offered future
resources before other frameworks . While it may seem counterintuitive that refus-
ing resources can help frameworks, we found that a simple policy where frame-
works wait a short time for local resources achieves near-perfect data locality in
typical cluster workloads .

 40 ;login: VOL. 36, NO. 4

One natural concern with resource offers is whether a framework will need to
wait for a large number of offers to find a resource that it wants . To prevent this
scenario, Mesos also provides an API for requests that lets frameworks specify
which resources they wish to be offered . For example, a framework might provide a
minimum amount of memory it needs, or a whitelist of nodes to run on . One impor-
tant benefit of the resource offer model, however, is that frameworks whose needs
cannot be expressed using requests can still achieve good task placement . That
is, requests are an optimization, while resource offers guarantee correctness and
allow the system to support arbitrary framework placement preferences .

More importantly, Mesos’s application-controlled scheduling model also helps
make the system extremely simple, scalable, and robust . Here is how Mesos
achieves each of the four goals outlined in the introduction:

 High utilization: Each framework is only allocated the resources to run its cur-
rent tasks, as opposed to a static partition of the cluster .

 Scalability: The Mesos master only makes inter-framework scheduling deci-
sions (to pick which framework has priority for new offers), which are much
simpler than the intra-framework decisions required for many applications
(e .g ., to achieve data locality) . Our optimized C++ implementation can make
thousands of decisions per second with sub-second latency and manage tens of
thousands of nodes .

 Reliability: The Mesos master only needs to store soft state: the list of currently
active frameworks and tasks . Therefore, if the master crashes, a standby master
can take over and repopulate its state within seconds when the frameworks and
slaves connect to it .

 Flexibility: Resource offers allow each framework to control its scheduling,
while requests represent an extensible and efficient mechanism for frameworks
to indicate their placement needs to the master .

Example Framework: Computing Pi

The Mesos team has already ported several popular frameworks, like Hadoop and
MPI, to run on Mesos, but one of our main goals with Mesos was to let users easily
develop other cluster applications that can run alongside existing frameworks . To
show you how a Mesos framework looks from a programmer’s perspective, Figure
2 illustrates a simple Python framework that computes p . Mesos also has APIs in
C++ and Java .

The framework is composed of a scheduler, which launches tasks, and an executor,
which runs them . The scheduler launches NUM_TASKS independent tasks, each
of which computes an estimate of p and then averages the results . Each task uses
an inefficient, but easy to explain method to estimate p: it picks random points in
the unit square (from (0,0) to (1,1)) and counts what fraction of them fall in the unit
circle . This fraction should be p/4, because one quarter of the unit circle is inside
this square, so we multiply the result by 4 . The tasks return their results in the data
field of a Mesos status update . Note that the executor runs each task in a separate
thread, in case a single machine is given multiple tasks .

Thanks to building on top of Mesos, this application does not need to implement
infrastructure for launching work on the cluster or for communicating between
tasks and the main program . It can just implement a few callbacks, such as
resourceOffer and statusUpdate, to run on the Mesos-managed cluster .

 ;login: AUGUST 2011 Mesos 41

Use Cases

Mesos Usage at Twitter

Twitter has been using Mesos internally as an end-to-end framework for deploying
some of their application services . Using Mesos for some of their services appealed
to Twitter for many reasons, including:

 Flexible deployment: Statically configuring where services should run makes it
difficult for different teams within Twitter to operate autonomously . By leverag-
ing Mesos, engineering teams can focus on doing code deploys against a generic
pool of resources, while the operations team can focus on the operating system
and hardware (e .g ., rebooting machines with new kernels, replacing disks, etc) .

 Increased utilization: Many services within the cluster are sharded for better
fault-tolerance and do not (or cannot) fully utilize a modern server with up to 16
CPU cores and 64+ GB of memory . Mesos enables Twitter to treat machines as a
pool of resources and run multiple services on the same machine, yielding better
overall cluster utilization .

 Elasticity: Certain services might want to “scale up” during peak or unexpected
events when traffic and load has increased . Using Mesos, it’s easy for different
services to consume more or less resources as they are needed .

Using Mesos to facilitate normal datacenter maintenance and upgrades has
been especially compelling at Twitter . Because Mesos notifies frameworks when
machines fail, operators can easily remove machines from the cluster (provided
there is enough general capacity) . Frameworks simply react to these “failures” and
reschedule their computations as needed .

Because of Mesos’s two-level scheduling design, Twitter can provide its own
organizational policies for how resources should be allocated to frameworks . For
example, some machines can have most of their resources dedicated to applica-
tions serving user requests (e .g ., Web servers and databases), allowing unused
“slack” resources to be used for lower-priority applications . Twitter uses Linux
Containers [2] to isolate services running on the same machine from one another .

class MyExecutor(mesos.Executor):!
 def launchTask(self, driver, task):!
 # Create a thread to run the task!
 thread = Thread(target = self.runTask,!
 args = (driver, task))!
 thread.start()!
!
 def runTask(self, driver, task):!
 NUM_SAMPLES = 1000000!
 count = 0.0!
 for i in range(1, NUM_SAMPLES):!
 x = random()!
 y = random()!
 if x*x + y*y < 1:!
 count += 1!
 result = 4 * count / NUM_SAMPLES!
 driver.sendStatusUpdate(!
 task.task_id, TASK_FINISHED, str(result))!

class MyScheduler(mesos.Scheduler):!
 def resourceOffer(self, driver, id, offers):!
 tasks = []!
 for offer in offers:!
 if self.tasksStarted < NUM_TASKS:!
 self.tasksStarted += 1!
 task = createTask(offer.slave_id,!
 {"cpus": 1, "mem": 32})!
 tasks.append(task)!
 driver.replyToOffer(id, tasks, {})!
!
 def statusUpdate(self, driver, update):!
 if update.state == TASK_FINISHED:!
 self.resultSum += float(update.data)!
 self.tasksDone += 1!
 if self.tasksDone == NUM_TASKS:!
 driver.stop()!
 result = self.resultSum / NUM_TASKS!
 print "Pi is roughly %f" % result!

Figure 2: A sample Mesos framework, in Python, for computing p. The scheduler (left) launches NUM TASKS tasks and averages their
results, while the executor (right) runs a separate estimation of p in a thread for each task. We omit some boilerplate initialization code.

 42 ;login: VOL. 36, NO. 4

Using Mesos, engineers at Twitter have been able to easily experiment with
building new services, including spam detectors, load testers, distributed tracing
frameworks, and service quality monitors, among others . Twitter continues to
experiment with using Mesos for deploying more services in their clusters .

Managing Hadoop Clusters

Running the popular Hadoop framework on Mesos has many advantages . In
current versions of Hadoop, a single master process (the job tracker) manages an
entire cluster, which creates a single point of failure and leads to poor isolation
between workloads (for example, a single user submitting too large a job may crash
the job tracker) . Mesos has been designed to support many concurrent frameworks,
so it can run each Hadoop job separately, with its own job tracker, isolating MapRe-
duce applications from each other . Mesos also provides stronger isolation of the
resources on each machine through Linux Containers . Finally, from an operations
viewpoint, an important advantage of running Hadoop on Mesos is that it enables
organizations to experiment with different versions of Hadoop in one cluster, or to
gradually upgrade from an older version to a newer one .

More recently, the next-generation Hadoop design was announced, which refac-
tors the current Hadoop job tracker into a simpler resource manager and a separate
application master for each job to achieve similar isolation benefits [7] . These new,
lightweight application masters fit cleanly as framework schedulers in the Mesos
model, and we are working to port them to run on top of Mesos to let Hadoop share
resources with the other frameworks supported by Mesos .

Spark: A Framework for Low-Latency In-Memory Cluster
 Computing

One of our main goals with Mesos was to enable the development of new analytics
frameworks that complement the popular MapReduce programming model . As an
example, we developed Spark, a framework for iterative applications and interac-
tive data mining that provides primitives for in-memory cluster computing . Unlike
frameworks based on acyclic data flow, such as MapReduce and Dryad, Spark
allows programmers to create in-memory distributed datasets and reuse them
efficiently in multiple parallel operations . This makes Spark especially suitable for
iterative algorithms that reuse the same data repeatedly, such as machine learning
and graph applications, and for interactive data mining, where a user can load a
dataset into memory and query it repeatedly . As previously mentioned, Spark can
outperform Hadoop by a factor of 30 in these tasks .

Spark provides a language-integrated programming interface, similar to Micro-
soft’s DryadLINQ [9], in Scala [5], a high-level language for the Java VM . This
means that users can write functions in a single program that automatically get
sent to a cluster for execution . For example, the following code snippet implements
the p estimation algorithm from earlier in this article:

val count = spark.parallelize(1 to NUM_SAMPLES).map(i =>

 val x = Math.random

 val y = Math.random

 if (x*x + y*y < 1) 1.0 else 0.0

).reduce(_ + _)

println(“Pi is roughly “ + 4 * count / NUM_SAMPLES)

 ;login: AUGUST 2011 Mesos 43

Here, the arguments to map and reduce are Scala function literals (closures) that
are automatically shipped to the Mesos cluster for parallel execution . The _ + _

syntax means a function to add two numbers .

As a more interesting example, the code below implements logistic regression [3],
an iterative machine learning algorithm for classification (e .g ., identifying spam) .
We build an in-memory distributed dataset called points by loading the data in a
text file, then run map and reduce operations on it repeatedly to perform a gradi-
ent descent . Loading points into memory allows subsequent iterations to be much
faster than the first and lets Spark outperform Hadoop for this application .

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {

 val gradient = points.map(p =>

 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

).reduce(_ + _)

 w -= gradient

}

println(“Final separating parameter: “ + w)

Spark can also be used interactively from a modified Scala interpreter to build and
query distributed datasets . We have used Spark to analyze several large traces in
the course of our research .

Spark is being used by several groups of machine learning researchers at Berkeley,
for projects including traffic estimation and spam detection on social networks .
It is also being used at Conviva, an online video distribution company, to run ana-
lytics on large Hadoop and Hive datasets . The system has grown into a research
project of its own, and is open source at http://www .spark-project .org .

Experimental Results

We evaluated Mesos through a series of experiments included in our NSDI ’11
paper [8] . We sketch three of them here .

Job performance in a shared cluster: In the first experiment, we wanted to com-
pare Mesos’s performance with a static partitioning of a cluster, where each parti-
tion ran a separate framework . For this, we ran a 100-node cluster on Amazon EC2
and concurrently ran four frameworks: (1) a mixed Hadoop workload based on the
workload at Facebook, (2) a Hadoop batch workload, (3) a Spark instance running
machine learning jobs, and (4) the popular Torque scheduler running MPI jobs .
Table 1 compares job completion times for Mesos and static partitioning . As seen,
most jobs speed up when using Mesos . Note that the Torque framework was con-
figured to never use more than a fourth of the cluster . It is therefore expected not
to see any speedup . The slight slowdown for Torque was due to a slow machine on
EC2 . The speedups are due to frameworks scaling up and down dynamically to use
other resources when another framework’s demand is low . In contrast, with static
partitioning, frameworks are confined to a fixed fraction of the cluster machines .

Scalability: The second experiment investigated how the Mesos master scales
with the cluster size . We ran 200 frameworks filling the whole cluster with tasks
that on average took 30 seconds to finish . Thus, the Mesos master was busy
making scheduling decisions as the tasks were continuously finishing and being
launched by the frameworks . We then launched one additional framework that

 44 ;login: VOL. 36, NO. 4

ran one task and measured the overhead of scheduling this task . The result was
that the scheduling overhead remained on average under one second for up to
50,000 slave daemons (which we ran as separate processes on up to 200 physical
machines), showing that the master can manage large clusters with heavy work-
loads . Much of the system’s scalability stems from our use of C++ and efficient I/O
mechanisms in the master .

Reliability: In the final experiment, we wanted to measure how fast Mesos recov-
ered from master failures . As in the scalability experiment, we filled the cluster
with tasks . We then killed the master node and measured how long it took for the
system to elect a new master node and repopulate its state . For a 4000-node clus-
ter, the whole system recovered within 10 seconds .

Table 1: Aggregate performance of each framework in the macro-benchmark (sum of running
times of all the jobs in the framework). The speedup column shows the relative gain on Mesos.

Conclusion

As the number of software frameworks for clusters grows, it is becoming increas-
ingly important to dynamically share resources between these frameworks . We
have presented Mesos, a scalable and reliable platform that enables efficient,
fine-grained sharing of clusters among diverse frameworks by giving frameworks
control over their scheduling . Mesos can currently run Hadoop, MPI, the Torque
resource manager, and a new framework, called Spark, for fast in-memory paral-
lel computing . We hope that Mesos also encourages the development of other
 frameworks that can coexist with these . Mesos is open source at http://www
 .mesosproject .org .

References

[1] Apache Hadoop . : http://lucene .apache .org/hadoop .

[2] Linux containers Containers (LXC) overview document .: http://lxc .source
forge .net/lxc .htmlhttp://lxc .sourceforge .net/ .

[3] Logistic regression—Wikipedia . : http://en .wikipedia .org/wiki/Logistic
_regression .

[4] memcached—a distributed object caching system . : http://memcached .org/ .

[5] Scala programming language . : http://www .scala-lang .org/ .

[6] The Message Passing Interface (MPI) Standard . : http://www .mcs .anl .gov/
research/projects/mpi .

Framework
Sum of Exec Times w/
Static Partitioning (s)

Sum of Exec Times
with Mesos (s)

Speedup

Facebook
Hadoop Mix

7235 6319 1.14

Large Hadoop
Mix

3143 1494 2.10

Spark 1684 1338 1.26

Torque / MPI 3210 3352 0.96

 ;login: AUGUST 2011 Mesos 45

[7] The Next Generation of Apache Hadoop MapReduce . : http://developer .yahoo
 .com/blogs/hadoop/posts/2011/02/mapreduce-nextgen .

[8] B . Hindman, A . Konwinski, M . Zaharia, A . Ghodsi, A .D . Joseph, R . Katz, S .
Shenker, and I . Stoica, “Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center,” in Proceedings of the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’11) .

[9] Y . Yu, M . Isard, D . Fetterly, M . Budiu, Ú . Erlingsson, P .K . Gunda, and J . Currey,
“DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language,” in 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’08), pp . 1–14 .

