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Scalability is one of the primary forces driving popularity and adoption of the 
Apache Hadoop project . A typical use case for Hadoop is an emerging Web site 
starting to run a five-node Hadoop cluster and then gradually increasing it to 
hundreds of nodes as business grows .

Last year ;login: published my article [12] summarizing one aspect of Hadoop 
scalability, namely, the limits of scalability of the Hadoop Distributed File System 
[13] . There are many other dimensions to Hadoop scalability . Here I would like to 
address some of them .

Source of Innovation

This has been an eventful year for Apache Hadoop [1] . The project has emerged as a 
data mining platform, becoming an industry standard for Big Data . Apache Hadoop 
is successfully used in science and a variety of industries . Scientific applications 
include mathematics, high energy physics, astronomy, genetics, and oceanography . 
The platform adoption has scaled far beyond information technology—its original 
target area—into most industries, excluding only hunting and fishing, but probably 
not for long .

Started as a computational platform for search engines, Apache Hadoop is 
now used for data warehousing, behavioral analysis, recommendation engines, 
cryptanalysis, meteorology, fraud and spam detection, natural language 
processing, genomic analysis, image processing, semantic text analysis, etc .

Apache Hadoop was used to compute the record two quadrillionth (1015) digit of π 
[15], which turned out to be 0, and helped IBM’s Watson to win on Jeopardy in the 
“Man versus Machine race,” as media presented it . Recognized for its influence 
on technological innovation, the Apache Hadoop project has won the 2011 
MediaGuardian Innovation Award over nominees such as iPad and WikiLeaks .

While Hadoop was the driving force of technological innovation, its internal 
innovation has been on a rather slow rise . Not to imply that it’s inert . On the 
contrary, a lot of development is going on in the field . Hard to underestimate 
the value of implementing security for Hadoop, or building analytical tools 
with Hadoop, or stabilizing internal company releases, which are essential for 
businesses running Hadoop . However, due to the lack of dominating gravitational 
force, these highly dedicated activities did not materialize in common production-
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ready releases, uniformly supported by different developer groups, which would 
have consolidated the project .

Size Matters

Incremental improvements in HDFS performance led to gradual growth of Hadoop 
clusters over the year . The largest Hadoop clusters are run by Yahoo and Facebook, 
with eBay catching up in a hurry . 

u Yahoo reportedly ran numerous clusters having 4000+ nodes with four 1 TB 
drives per node, 15 PB of total storage capacity, 70 million files, and 80 million 
blocks using 50 GB NameNode heap .

u Facebook’s 2000-node warehouse cluster [2] is provisioned for 21 PB of total 
storage capacity . Extrapolating the announced growth rate, its namespace should 
have close to 200 million objects (files + blocks) by now, but an immense 108 GB 
heap should allow room for close to 400 million objects .

u eBay runs a 700-node cluster . Each node has 24 TB of local disk storage, 72 GB 
of RAM, and a 12-core CPU . Total cluster size is 16 PB . It is configured to run 
26,000 MapReduce tasks simultaneously .

As observed in the past, the average size of HDFS files is decreasing . This trend 
is sustainable as the cluster grows and becomes available for a larger variety of 
applications . The phenomenon is characterized by the decreasing block-to-file 
ratio, which has dropped from 2 in 2008 to 1 .5 in 2009 and to 1 .1 today . 

DataNode’s local storage capacity is increasing as cheaper 2 TB drives fall under 
the category of commodity hardware . Combined with the growing number of cores 
per processor and larger RAM sizes, this leads to more compact but powerful 
clusters . 

While the clusters become more compact, the network bandwidth becomes the 
limiting factor of the cluster performance . Typical network bandwidth between 
nodes on the same rack is 1 Gbps, which converts into a 119 MB/s data transfer 
rate . The read rate for a single disk drive usually exceeds 60 MB/s . This means 
that if one runs a read-intensive job, such as DFSIO-read, then in order to saturate 
the network capacity of a single node, it is enough to have only two tasks reading 
from two different drives on that node . In practice the I/O rate of a combination 
of random reads and writes is lower, and only a fraction of those I/Os results in 
actual data transfers . Based on observations on busy Hadoop clusters, the average 
data transfer rate per client is 10 MB/s . In this case 12 clients accessing data 
from 12 different drives of a single node will saturate the node’s network capacity . 
Therefore, adding more drives will not increase the aggregate throughput of the 
cluster, which means that dense local storage is beneficial only for the cluster that 
stores a vast amount of rarely accessed data, as in data warehouses .

Decreasing file sizes and compaction of the clusters: both of these trends drive the 
demand for higher Hadoop scalability .

MapReduce: Scaling the Framework

The simplicity of the MapReduce [5] computational model combined with its 
power to incorporate and utilize distributed resources of commodity hardware is 
the second driving force of Hadoop’s popularity .
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A MapReduce job is a two-stage computation, with each stage defined by a 
plain Java (or C++, or Python) program—a task . The input data for each stage 
is distributed across the nodes of the cluster, and the same task is run against 
different blocks of the input data on the node containing the data block . The job 
produces distributed output . This type of computation minimizes data transfer by 
moving computation to data and not vice versa .

The Apache Hadoop MapReduce framework has reportedly reached its scalability 
limit at 40,000 clients simultaneously running on the cluster . This corresponds to 
a 4,000-node cluster with 10 MapReduce clients—slots, in Hadoop terminology—
per node .

The implementation of the Hadoop MapReduce framework follows the same single 
master architecture as HDFS . The single master is called JobTracker . It shepherds 
the distributed herd of slaves called TaskTrackers . The JobTracker serves two 
primary functions:

1. Job scheduling and resource allocation
2. Job monitoring and job life-cycle coordination

The first function is fundamentally centralized, but the second one is not . 
Coordination of many jobs running on thousands of TaskTrackers makes the 
single JobTracker a constraining resource for the entire cluster .

There are ongoing efforts ([10], [7]) to improve scalability of the MapReduce 
engine by delegating the coordinating function to different cluster nodes for 
different jobs . That way, even if the JobTracker fails the jobs will continue to run, 
as their lifecycles are controlled by other nodes .

This also intends to address another weak point of today’s implementation—the 
static partitioning of cluster resources . In current MapReduce architecture the 
cluster is divided into a fixed number of map and reduce slots, which are uniformly 
configured per node . Each slot can be used for tasks of the assigned type (map or 
reduce) only and therefore cannot be reallocated to another type if the demand for 
the latter increases . Static cluster configuration also does not take into account 
the amount of resources—RAM, CPU, disk space, network bandwidth—required 
for different tasks, which may lead to underutilized resource usage for some tasks 
and starvation for others .

HDFS: Static Partitioning

Hadoop deployments have reached the architectural limit . With HDFS clusters 
running at capacity, the only direction for growth is a horizontal increase in the 
number of clusters . The demand to support smaller files, and the evolutionary 
growth of storage devices and computational power of servers, which allows 
aggregating more resources per cubic foot, are the two major factors contributing 
to the demand for higher scalability in distributed storage systems .

Current HDFS architecture by design assumes that a single server, the NameNode, 
dedicated to maintaining the file system metadata consisting of files, directories, 
and blocks, controls the work of other cluster nodes, DataNodes, handling the 
actual data blocks of files . The system is designed to scale linearly on the number 
of DataNodes, as they can process data transfers independently of each other . 
However, the NameNode is a single source of metadata information . 
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The HDFS scalability is limited solely by NameNode resources [12] . In order to 
process metadata requests from thousands of clients efficiently, NameNode keeps 
the entire namespace in memory . The amount of RAM allocated for the NameNode 
limits the size of the cluster .

The number of active clients is proportional to the size of the cluster . As the cluster 
grows, the increasing number of clients provides higher load on the NameNode . 
Being a single point of entry, the NameNode’s efficiency limits the aggregate cluster 
performance .

It is clear that further scaling of HDFS requires a scalable architecture for its 
namespace . 

One approach, called Federation [11], is based on the idea that multiple independent 
namespaces can share a common pool of DataNodes as a block storage layer . The 
namespaces representing isolated file systems, called volumes, are maintained by 
dedicated NameNodes—one per volume—and evolve independently of each other . 
Each DataNode maintains blocks of multiple volumes and reports those blocks 
to corresponding NameNodes . The cluster then is defined as a family of volumes 
sharing the same pool of DataNodes .

In order to conceive the isolation of the file systems from clients, the volumes 
are “federated” under client-side mount tables . The client-side mount table is a 
virtual file system, called ViewFS, which provides a common view of the cluster 
for a group of clients unified by common cause . ViewFS in general is a sequence 
of symbolic links—fully qualified HDFS paths—that can be passed over via a job 
configuration file to all tasks of that job in order to supply them with a common 
view of the world .

A federated cluster can store more data and handle more clients, because it has 
multiple NameNodes . However, each individual NameNode is subject to the same 
limits and shortcomings, such as lack of High Availability (HA), as a non-federated 
one .

The federated approach provides a static partitioning of the federated namespace . 
If one volume grows faster than the other and the corresponding NameNode 
reaches the limit, its resources cannot be dynamically repartitioned among other 
NameNodes except by manually copying files between file systems . 

The Distributed Namespace Challenge

On the next evolutionary step, HDFS should become a distributed highly available 
file system without a single point of failure, which can:

u Store hundreds of billions of objects
u Support millions of concurrent clients
u Maintain an exabyte (1018) of total storage capacity

The main motivation for building such a system is the ability to grow the 
namespace . The current namespace limit is 100 million files . Static partitioning 
will scale the federated namespace to billions of files . Estimates show that 
implementation of a dynamically partitioned namespace will be able to support 
100 billion objects .

Service continuation and availability is another strong motivation for the system . A 
big HDFS installation with a NameNode operating in a large JVM is vulnerable to 



 ;login: JUNE 2011  Apache Hadoop   11

frequent full garbage collections, which may take the NameNode out of service for 
several minutes . “Bad” clients, producing a high number of metadata operations, 
can saturate the NameNode, effectively making it unavailable for other tasks . And, 
finally, a failure of the NameNode makes the file system inaccessible for up to an 
hour—the time it takes to restart the NameNode .

Building a large system compared to maintaining a number of smaller ones 
simplifies its operability . Currently, the effort of operating clusters of 400 nodes is 
roughly the same as for clusters of 4000 nodes . The cost of maintaining different 
clusters is proportional to the number of clusters .

Building such a system from scratch can take years, as this is how long creating 
viable file systems takes . A simpler approach is to construct the system from 
existing reliable components . For HDFS, one needs to find a component able to 
maintain a distributed namespace . It turns out that the Hadoop family has just the 
one .

Apache HBase [14] organizes data into big, sparse, loosely structured tables . The 
elements of a table are rows, having unique row keys . An HBase table can have an 
arbitrary number of columns, grouped into a small predefined number of column 
families . The columns can be created dynamically, but not the column families . 
Tables are partitioned into regions—horizontally across rows and vertically across 
column families . Regions are stored as (compressed) files in HDFS . HBase runs on 
a cluster of machines called region servers . Each region server caches a number of 
regions and serves this data to HBase clients . The goal is to provide a structured 
yet flexible presentation of data for random, near real-time read and write access 
to very big tables, consisting of billions of rows and millions of columns . Apache 
HBase is an implementation of Google’s BigTable [3] .

HBase can be used to maintain the file system namespace, making it a scalable 
replacement for the HDFS’s NameNode . With this approach, files and directories 
become rows of a very large HBase table representing the entire file system . The 
file blocks will still be stored on and served from DataNodes . This will preserve the 
decoupling of data and metadata—one of the key principles of HDFS architecture . 

Google used this approach to build its next-generation GFS Colossus [4] . 
Prototypes such as VoldFS and CassFS [6] have been built based on the same 
principles but using a competing database, with HBase metadata stores Voldemort 
and Cassandra, respectively . Pomegranate [9] implements it own tabular storage 
utilizing the same idea .

Of the many design challenges facing such systems, probably the main two are:

u Namespace partitioning
u Atomic rename

Namespace partitioning is the problem of mapping the hierarchical file system 
tree to the flat table structure . A naïve approach is to simply hash file paths, with 
the hash value defining the partition the file belongs to . This approach lacks the 
important principle of locality, as a simple listing of a directory requires accessing 
multiple partitions, which may be located on different nodes . Another approach 
is a Ceph-like [16] partitioning into full subtrees . This provides good locality of 
reference, even somewhat too good, assuming that the degree of locality of files 
in a tree is proportional to the number of their common ancestors . Somewhere in 
between is an approach which partitions the tree into small fixed-height tiles . For 
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example, for height 2 and for a given directory D the tile contains D itself, all its 
children, and all grandchildren . The tiles can then be arbitrarily combined into 
partitions . This is similar to the way reiserFS partitions the namespace into fixed-
size blocks .

Renaming is tightly related to the partitioning problem, because when the row 
(file) keys are based on file paths, even a simple case of rename—that is, changing 
a file’s local name—may move the file into a different partition . And a directory 
rename in that case can lead to a massive cross-partition relocation of files 
in the subtree . Therefore, row keys should be based on unique file IDs (inode 
numbers) rather than paths . This still leaves unsolved a more general case of 
rename, required by POSIX semantics: an atomic move of a file from one directory 
to another . The problem is hard, as it requires a consistent update of multiple 
partitions potentially distributed across the cluster . A solution involves use of 
PAXOS-like [8] consensus-building algorithms . A “lazy” approach is to sacrifice 
this functionality, relaxing the semantics of rename to support only the simple 
case (in-place rename) in favor of higher scalability . Applications relying on the 
atomicity of cross directory moves will have to implement it internally . In many 
cases this is easier than building a generic solution .

The Final Dimension

An open source platform like Apache Hadoop,usually provides a generic tool to 
do things . Given the tool, companies and organizations initially benefiting from 
the ability to quickly adopt the system for their business use cases then tend to 
continue investing in testing, performance tuning, and refining the tool for their 
production needs . Ideally, this drives innovation, and the platform evolves into 
a highly tunable and adaptive system with various controls to make it fit many 
practical use cases .

Flexibility of the system adds another axis to the Hadoop scalability universe . I 
would like to thank my numerous colleagues in the Apache Hadoop community for 
contributing to this multidimensional endeavor .
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