
; LO G I N : D ECEM B E R 201 0 7

R O B E R T N . M . W AT S O N ,
J O N AT H A N A N D E R S O N , B E N L A U R I E ,
A N D K R I S K E N N A W AY

introducing
Capsicum: practical
capabilities for UNIX
Robert N.M. Watson is a PhD candidate
at the University of Cambridge Computer
Laboratory. His PhD research is in operating
system security extensibility. Prior to joining
the Computer Laboratory, he was a Senior
Principal Scientist at McAfee Research, now
SPARTA ISSO, where he directed commercial
and government research and development
projects in computer security, including the
TrustedBSD MAC Framework now used for
access control in FreeBSD, Juniper Junos, Mac
OS X, and Apple iOS. His research interests
include operating system security, network
stack performance, and the evolving
software-hardware interface. Mr. Watson
is also a member of the board of directors
for the FreeBSD Foundation, a 501(c)(3) non-
profit supporting development of FreeBSD, a
widely used open source operating system.

robert.watson@cl.cam.ac.uk

Jonathan Anderson is a PhD student in the
University of Cambridge Computer Labora-
tory. His research interests include operating
system security and privacy in distributed
social networks.

jonathan.anderson@cl.cam.ac.uk

Ben Laurie works on security, anonymity,
privacy, and cryptography and thinks object
capabilities are the best hope we’ve got. He
currently splits his time between the Applied
Security group at Google and working on the
Belay project at Google Research.

benl@google.com

Kris Kennaway is a Senior Site Reliability
Engineer at Google. He is a former FreeBSD
Security Officer and a former member of
the FreeBSD Core Team. His interests include
computer security, operating system scal-
ability on multi-core hardware, and the
design, care, and feeding of large-scale
distributed systems. Kris received a PhD in
theoretical physics from the University of
Southern California in 2004.

kennaway@google.com

A P P L I C AT I O N S A R E I N C R E A S I N G LY
turning to privilege separation, or
sandboxing, to protect themselves from
malicious data, but these protections are
built on the weak foundation of primitives
such as chroot and setuid. Capsicum is a
scheme that augments the UNIX security
model with fine-grained capabilities and
a sandboxed capability mode, allowing
applications to dynamically impose
capability discipline on themselves.
This approach lets application authors
express security policies in code, ensuring
that application-level concerns such
as Web domains map well onto robust
OS primitives. In this article we explain
how Capsicum functions, compare it to
other current sandboxing technologies in
Linux, Mac OS, and Windows, and provide
examples of integrating Capsicum into
existing applications, from tcpdump and
gzip to the Chromium Web browser.

Compartmentalization

Today’s security-aware applications are increasingly
written as compartmentalized applications, a
collection of cooperating OS processes with
different authorities. This structure, which we term
a “logical application” and illustrate in Figure 1, is
employed to mitigate the harm that can be done
if inevitable vulnerabilities in application code are
exploited.

F I G U R E 1 : C A P S I C U M H E L P S A P P L I C A T I O N S
S E L F - C O M P A R T M E N T A L I Z E .

For instance, in the Chromium Web browser, a
malicious image that exploits a libpng vulnerability
can be confined to a renderer process responsible
for converting Web content such as HTML and
compressed images into pixels. Such a process has
less access to OS services such as the file system
and network stack than the main browser process,

8 ; LO G I N : VO L . 35, N O. 6

so the damage that can be done by malicious content is limited. Other
widespread examples of software using this technique include PackageKit,
Apple’s Security Server, and OpenSSH’s sshd.

Unfortunately, self-compartmentalizing code is very difficult to write, as
contemporary commodity operating systems are firmly engrained with the
notion of ambient authority: applications running with the full authority of
the user who launched them. Creating a sandbox thus involves restricting
existing access to user- or system-level rights, a process which frequently
itself requires system privilege.

Capabilities

At the other end of the authority spectrum are capability systems, such
as CMU’s Hydra operating system [1], that support true least-privilege
discipline in their applications. In such a system, application code can only
exercise authority (e.g., access user files) through fine-grained capabilities,
unforgeable tokens of authority, which have been delegated to it.

Capability systems are designed around delegation, since they allow tasks
to selectively share fine-grained rights with other tasks through inheritance
and explicit assignment. In this model, the operating system enforces the
isolation of tasks and the restriction-associated capabilities, but semantically
rich policy—what the capability means and who should have access to it—is
defined by applications. This separation of mechanism and policy is very
useful, and it is one which we sought to enhance on the UNIX platform by
the addition of capability features.

Capsicum

Capsicum is a new approach to application compartmentalization. It is a
blend of capability and UNIX semantics which, we believe, has some of the
best characteristics of both. It allows applications to share fine-grained rights
among several rigorously sandboxed processes, but preserves existing UNIX
APIs and performance. Capsicum also provides application writers with a
gradual adoption path for capability-oriented software design.

DESIGN

Capsicum extends, rather than replaces, standard UNIX APIs by adding
new kernel primitives and userspace support code to help applications self-
compartmentalize.

The most important new kernel primitives include a sandboxed capability
mode, which limits process access to all global OS namespaces, and
capabilities, which are UNIX file descriptors with some extra constraints. The
userspace additions include libcapsicum, a library which wraps the low-level
kernel features and a capability-aware run-time linker.

CAPABILITY MODE

Capability mode is a process credential flag set by a new system call, cap_
enter, available to all users. Once set, the flag is inherited by all descendent
processes and cannot be cleared. Processes in capability mode are denied
access to global namespaces such as the file system, PIDs and SystemV IPC
namespaces.

; LO G I N : D ECEM B E R 201 0 I NTRO DUCI N G C A P SI CUM : PR AC TI C A L C A PA B I L IT I ES FO R U N IX 9

Access to system calls in capability mode is also restricted: some system
calls requiring global namespace access are unavailable, while others
are constrained. For instance, sysctl can be used to query process-local
information such as address space layout, but also to monitor a system’s
network connections. We have constrained sysctl by explicitly marking ≈30
of 3000 parameters as permitted in capability mode; all others are denied.

The system calls requiring constraints include sysctl, shm_open, which is
permitted to create anonymous memory objects, but not named ones, and the
openat family of system calls. The *at calls already accept a file descriptor
argument as the directory relative to which to perform the open, rename,
etc.; in capability mode, they are constrained so that they can only operate
on objects “under” this descriptor. For instance, if file descriptor 4 is a
capability allowing access to /lib, then openat(4, “libc.so.7”) will succeed,
whereas openat(4, “../etc/passwd”) and openat(4, “/etc/passwd”) will not.
This allows partial namespace delegation, as shown in Figure 2.

F I G U R E 2 : A U T H O R I T Y O V E R P O R T I O N S O F T H E F I L E S Y S T E M C A N B E
D E L E G A T E D .

CAPABILITIES

In Capsicum, a capability is a type of file descriptor that wraps another
file descriptor and constrains the methods that can be performed on it, as
shown in Figure 3.

F I G U R E 3 : C A P A B I L I T I E S “ W R A P ” N O R M A L F I L E D E S C R I P T O R S ,
M A S K I N G T H E S E T O F P E R M I T T E D M E T H O D S .

File descriptors already have some properties of capabilities: they are
unforgeable tokens of authority and can be inherited by a child process or
passed between processes that share an IPC channel. Unlike true object
capabilities, however, they confer very broad rights as a side effect: even if
a file descriptor is read-only, operations on metadata such as fchmod are

Apache Apache
Worker 1

Apache
Worker 2

Logical Application

/
etc var

apache passwd www

site1 site2

8

10

14
...

Process file
descriptors

struct
file

struct
vnode

struct
file

struct capability

mask = READ | WRITE

struct
file

struct capability

mask = READ

...

10 ; LO G I N : VO L . 35, N O. 6

permitted. Capsicum restricts these operations by wrapping the descriptor
in a capability descriptor, checking the mask of allowable operations
whenever the file object is looked up. For instance, when the read system
call is invoked with a capability, that capability can only be converted to a
file object if its mask includes CAP_READ.

Capabilities are created via the cap_new system call, which accepts an
existing file descriptor and a mask of rights as arguments. If the original
descriptor is a capability, the result will be a new capability with a subset
of the original’s rights; applications may always reduce the privilege of a
file descriptor, but they may never escalate it. Like other file descriptors,
capabilities may be inherited across fork and exec, as well as passed via
UNIX domain sockets.

There are approximately 60 rights which a capability can mask, striking
a balance between pure message-passing (two rights: send and receive)
and MAC systems (hundreds of access control checks). We have selected
rights which align with logical methods on file descriptors; some system
calls require multiple rights, and calls implementing semantically identical
operations require the same rights. For example, pread (read to memory)
and preadv (read to a memory vector) both require CAP_READ in a
capability’s rights mask, while read (read bytes using the file offset) requires
CAP_READ|CAP_SEEK.

Capability rights are checked by fget, the in-kernel function for converting
file descriptor numbers into in-kernel references. This strategy—
implementing checks at a single point of service deep in the kernel, rather
than in several system calls—is repeated throughout Capsicum, providing
assurance that no alternate code paths exist which could be used to bypass
checks.

Many past security extensions have composed poorly with UNIX security,
leading to vulnerabilities. As a result, we disallow privilege elevation via
fexecve using setuid and setgid binaries in capability mode. This restriction
does not prevent setuid binaries from using sandboxes.

RUN-TIME ENVIRONMENT

Even with Capsicum’s kernel primitives, creating sandboxes without leaking
undesired resources via file descriptors, memory mappings, or memory
contents is difficult. Processes, including libraries they use, may access
resources with overly broad rights, or fail to relinquish access when it is
no longer needed. Furthermore, introducing robust sandboxing forces
fundamental changes to the UNIX run-time environment: even fork and
exec rely on global namespaces—process IDs and the filesystem namespace.

libcapsicum therefore provides an API for starting sandboxed processes
and ensuring that they only possess authority which has been explicitly
delegated to them.

After creating a new process with the descriptor-oriented pdfork, libcapsicum
cuts off the sandbox’s access to global namespaces via cap_enter. In order to
ensure that rights are not accidentally leaked from parent to child, it then
closes all inherited file descriptors that have not been positively identified
for delegation and flushes the address space via fexecve. Sandbox creation
returns a UNIX domain socket that applications can use for inter-process
communication (IPC) and for sharing additional rights between host and
sandbox.

; LO G I N : D ECEM B E R 201 0 I NTRO DUCI N G C A P SI CUM : PR AC TI C A L C A PA B I L IT I ES FO R U N IX 11

Starting a process inside a sandbox requires a Capsicum-aware run-time
linker, which loads dynamic libraries from read-only directory descriptors
rather than the global filesystem namespace. The main function of a program
can call lcs_get to determine whether it is in a sandbox, retrieve sandbox
state, query creation-time delegated capabilities, and retrieve an IPC handle
so that it can process RPCs and receive runtime delegated capabilities. This
allows a single binary to execute both inside and outside of a sandbox,
diverging its behavior based on its execution environment.

APPLICATIONS

Adapting applications for use with sandboxing is a non-trivial task,
regardless of the framework, as it requires analyzing programs to
determine their resource dependencies, and adopting a distributed system
programming style in which components must use message passing or
explicit shared memory rather than relying on a common address space
for communication. Capsicum does not solve this problem; what it does do
is make it easy for an application writer, having decided where a security
boundary should lie, to enforce it by creating a robust sandbox and sharing
fine-grained, least-privileged rights with it.

We describe in this article two applications that we have modified to take
advantage of Capsicum’s features, one small and conceptually simple,
tcpdump, and one large and complex, Chromium. For more case study
details, please see our 2010 USENIX Security Symposium paper [2].

TCPDUMP

tcpdump provides an excellent example of Capsicum primitives offering
immediate security benefits through straightforward changes. Historically,
tcpdump has been a breeding ground for serious security vulnerabilities,
as it has both root privilege and complex packet-parsing code. It is also a
very simple program, however, which lends itself handily to sandboxing:
resources are acquired early with ambient system privilege, after which
packet processing depends only on open file descriptors.

True privilege dropping for tcpdump is accomplished with eight lines of
code, shown in Figure 4. Verifying that unneeded privileges have been
dropped can be done with the procstat tool; Figure 5 shows that the rights
on STDIN have been appropriately constrained.

@@ -1197,6 +1199,14 @@
 (void)fflush(stderr);
 }
 #endif /* WIN32 */
+ if (lc_limitfd(STDIN_FILENO, CAP_FSTAT) < 0)
+ error(“lc_limitfd: unable to limit STDIN_FILENO”);
+ if (lc_limitfd(STDOUT_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+ error(“lc_limitfd: unable to limit STDIN_FILENO”);
+ if (lc_limitfd(STDERR_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+ error(“lc_limitfd: unable to limit STDERR_FILENO”);
+ if (cap_enter() < 0)
+ error(“cap_enter: %s”, pcap_strerror(errno));
 status pcap_loop(pd, cnt, callback, pcap_userdata);
 if (WFileName =NULL) {

F I G U R E 4 : T C P D U M P D R O P S A L L U N N E E D E D P R I V I L E G E W I T H E I G H T
L I N E S O F C O D E .

12 ; LO G I N : VO L . 35, N O. 6

PIDCOMM FD T FLAGS CAPABILITIES PRO NAME
1268 tcpdump 0 v rw------c fs - /dev/pts/0
1268 tcpdump 1 v -w------c wr,se,fs - /dev/null
1268 tcpdump 2 v -w------c wr,se,fs - /dev/null
1268 tcpdump 3 v rw------- - - /dev/bpf

F I G U R E 5 : P R O C S T A T - F C D I S P L A Y S C A P A B I L I T I E S H E L D B Y T C P D U M P.
I N T H E C A S E O F S T D I N , O N LY F S T A T (F S) I S P E R M I T T E D .

CHROMIUM

Google’s Chromium Web browser already uses a compartmentalized multi-
process architecture similar to a Capsicum logical application on several
operating systems [3], so it is an excellent platform for comparing Capsicum
with other sandboxing techniques.

Once the FreeBSD port of Chromium was modified to use POSIX rather
than System V shared memory (the former, from the Mac OS X port,
is descriptor-oriented and thus permitted in Capsicum sandboxes),
approximately 100 additional lines of code were required to limit access to
file descriptors inherited by and passed to sandbox processes and to call
cap_enter.

The result was a robust sandbox that, unlike porous approaches which
require hundreds of lines of handcrafted, security-critical assembly code,
could be completed in just two days.

Comparison

A plethora of existing security technologies have been used to construct
sandboxes in security-aware applications such as Chromium. Each
technology has its place—we do not claim that UNIX users and system
integrity policies are obsolete—but each also has significant limitations
when used for application sandboxing.

We compare Capsicum with five sandboxing mechanisms already employed
by Chromium (see Table 1). Each mechanism is used to split the browser
into a main browser process, which draws the browser’s chrome and
interacts with objects such as files, and several renderer processes, which
execute untrusted code to uncompress images, interpret JavaScript, etc.

Operating system Model Line count Description

Windows ACLs 22,350 Windows ACLs and SIDs

Linux chroot 605 SUID-root sandbox helper

Mac OS X Seatbelt 560 Path-based MAC sandbox

Linux SELinux 200 Type Enforcement sandbox domain

Linux seccomp 11,301 seccomp and userspace syscall wrapper

FreeBSD Capsicum 100 Capsicum sandboxing using cap_enter

T A B L E 1 : S A N D B O X I N G M E C H A N I S M S E M P L O Y E D B Y C H R O M I U M

Of the six mechanisms employed by Chromium, two are rooted in
Discretionary Access Control (users and permissions), two in Mandatory
Access Control (labels and system policies), and two in capabilities
(unforgeable tokens of authority which are passed between or inherited by
processes).

; LO G I N : D ECEM B E R 201 0 I NTRO DUCI N G C A P SI CUM : PR AC TI C A L C A PA B I L IT I ES FO R U N IX 13

DISCRETIONARY ACCESS CONTROL

In Discretionary Access Control (DAC), the owners of objects specify what
rights other users have on those objects; one common example of DAC is
the UNIX permissions scheme. Such protections can be used to constrain
application behavior if code runs with the authority of a user—such as
“nobody” in traditional UNIX systems—with less privilege than the user
running the application.

Chromium uses DAC to construct sandboxes on both Windows and Linux.
In both cases, inter-user mechanisms fail to provide effective intra-user
protections: the robustness of the sandbox is limited, because every user
possesses some ambient authority.

Windows ACLs
On Windows, Chromium uses access control lists (ACLs) and security
identifiers (SIDs) to effectively run renderer processes as an anonymous user
who cannot access objects which belong to “real” users [3]. The unsuitability
of the approach is demonstrated well; the model is both incomplete and
unwieldy.

The approach is incomplete because objects which are not associated with
any user do not receive the protections afforded to objects with ACLs. Some
workarounds are possible—for instance, an alternate, invisible desktop
is used to protect the user’s GUI environment—but many objects remain
completely unprotected, including FAT file systems on USB sticks and TCP/
IP sockets. Thus, a “sandboxed” renderer process can communicate with any
server on the Internet, or even the user’s Intranet via a configured VPN!

The approach is also unwieldy in that many legitimate system calls by the
sandbox are denied, and must be forwarded to a trusted process which
services them on the sandbox’s behalf. This forwarding, filtering, and
servicing code comprises most of the 22,500 lines of code in the Windows
sandbox module, and all of it is absolutely security-critical.

chroot
Chromium’s suid sandbox on Linux also attempts to create a privilege-
free sandbox using legacy DAC-based access control; the result is similarly
porous, and it brings an additional requirement of system privilege.

In this model, access to the file system is limited to a virtual root directory
via chroot, but access to other namespaces, including the network and
System V shared memory (where the user’s X window server can be
contacted), is unconstrained.

This sandboxing mechanism also carries an additional requirement: system
privilege is required to initiate chroot, so Chromium includes a SUID-root
binary which is responsible for starting sandboxes. Thus, sandboxing can
only be done with the permission of the system administrator, and any
compromise of the setuid binary would have more disastrous consequences
than the browser compromise it attempts to protect against.

MANDATORY ACCESS CONTROL

Mandatory Access Control (MAC) is used to enforce system policies such as
“files labeled Top Secret shall only be read by users cleared to at least Top
Secret,” and “files labeled High Integrity shall only be modified by software
labeled at least High Integrity.”

14 ; LO G I N : VO L . 35, N O. 6

MAC systems require policy to be described separately from application
code. In the context of Multi-Level Secure systems and intelligence
applications, this requirement allows rigorous and auditable control of
information flow. In the context of sandboxing for consumer applications,
however, it leads to the dual-coding problem: policy and code will get out of
sync, especially if code is written by a vendor and policy by a distribution,
so application writers must choose between false positives (legitimate
actions are forbidden) and false negatives (illegitimate actions are permitted).
In practice, very broad rights are often conferred to avoid blocking legitimate
actions.

Furthermore, applying a MAC policy requires the involvement of the system
administrator; in order to reduce application authority, system privilege is
required. Users are, thus, only protected by MAC if the system administrator
has already installed a policy for the software they run, and applications
cannot dynamically reconfigure their sandboxes.

SELinux
Chromium supports MAC-based compartmentalization on Linux via an
SELinux Type Enforcement policy [4]. We acquired such a policy, not from
the Chromium repository, but from the Fedora project, a Linux distribution.
Since code and policy come not just from different authors but from
different organizations, the dual-coding problem may be expected to be
severe.

Compounding the general dual-coding problem further, SELinux policies
are so flexible and fine-grained that they are typically written using coarse-
grained macros. As an example of one or both of these problems, the Fedora
reference policy for Chromium assigns very broad rights, such as the ability
to access the terminal device and read all files in /etc.

The requirement for system privilege in defining new policy and types
means that Chromium cannot adapt its sandboxes to create new ephemeral
security domains for each new website that is visited. For instance, Fedora’s
policy creates a single SELinux dynamic domain, chrome_sandbox_t,
which is shared by all sandboxes. Thus, malicious code from evil.com is not
prevented from interfering with the renderer process for bank.com.

Mac OS X Sandbox
Chromium also uses a MAC-based framework on Mac OS X to create
sandboxes. The Mac OS X sandbox system allows processes to be
constrained according to a Scheme-based policy language [5]. It uses the
BSD MAC Framework [6] to check application activities against the compiled
policy, which can express fine-grained constraints on the file system but,
again, coarse all-or-nothing constraints on other namespaces, such as POSIX
shared memory.

The Seatbelt-based sandbox model is less verbose than other approaches,
but like all MAC systems, security policy must be expressed separately from
code, which can lead to inconsistencies and vulnerabilities. Chromium’s
policy, while restricting access to the global filesystem namespace, allowed
access to filesystem elements such as font directories.

CAPABILITIES

The third category of compartmentalization techniques contains capability-
based approaches. As was mentioned above, capabilities are unforgeable
tokens of authority which can be passed between processes, supporting a
delegation-oriented security policy.

; LO G I N : D ECEM B E R 201 0 I NTRO DUCI N G C A P SI CUM : PR AC TI C A L C A PA B I L IT I ES FO R U N IX 15

The UNIX file descriptor is an example of a capability-like object: an
application cannot create one without the help of the OS kernel, and once
created, it can be shared with other processes, which can then perform
system calls such as read and write on it, even if those processes do not have
permission to open the file for themselves. UNIX file descriptors are not
well-formed capabilities, however. One serious problem with file descriptors
is that they are very coarse: a descriptor may allow a process to fchmod
the file it points to, even if it was opened with O_RDONLY. Thus, both of
the following approaches further limit the authority that a file descriptor
conveys and cut off ambient authority.

seccomp
One capability-oriented approach to sandboxing is Linux’s seccomp. This
is an optionally available mode which denies access to all system calls
except read, write, and exit. Processes sandboxed in this way are quite
rigorously confined, but only the very simplest applications can use the
mode directly; in order to interact meaningfully with the user, network, file
system, etc., significant scaffolding code is required to forward system calls,
as in the case of the Windows sandbox. Like its Windows counterpart, the
Chromium seccomp sandbox contains over a thousand lines of handcrafted,
security-critical assembly code to set up sandboxing, implement system call
forwarding, and craft a basic security policy (which, incidentally, is default-
allow for all filesystem reads; a more complex policy would be even more
unwieldy).

Capsicum
Capsicum brings capability concepts to UNIX, allowing sandboxes to be
rigorously confined while still able to use capability-oriented UNIX APIs
with full UNIX performance.

The modifications required to implement Chromium sandboxing on
Capsicum are almost trivial—approximately 100 lines of code—yet they are
more robust and flexible than other approaches which require hundreds or
even tens of thousands of lines. Furthermore, in contrast to approaches that
require system call interception and forwarding, sandboxed processes can
operate on file descriptors, and the objects like shared memory which they
refer to, with almost no performance degradation.

PERFORMANCE

Typical operating system security benchmarking is targeted at illustrating
zero or near-zero overhead in the hopes of selling general applicability
of the resulting technology. Our goal is slightly different: application
writers have already accepted significant overheads in order to adopt
compartmentalization, so we seek to significantly improve security while
keeping comparable performance.

Capsicum’s capability mode and capabilities are designed to offer native
UNIX performance for common operations, as frequently performed
operations such as read and write are performed directly on capabilities.
Likewise, directory descriptor delegation allows whole UNIX subtrees
to be delegated to sandboxes, avoiding message passing on file open in
many common cases. This approach is, fundamentally, a hybrid approach,
combining elements of the UNIX OS model with a capability system: UNIX
would offer unfettered access to the entire file system with privilege, and
a capability system might rely on message-passing interposition to filter
namespaces, imposing message-passing overhead on common operations.

16 ; LO G I N : VO L . 35, N O. 6

Detailed performance results, as well as discussion of trade-offs between
security and performance, can be found in our USENIX Security paper
[2], but suffice it to say that Capsicum primitives are generally as fast as,
and sometimes faster than, current UNIX primitives. Performance remains
a critical area of research, however; while Capsicum may be cleaner and
more efficient for existing privilege-separated applications, adapting further
applications will perpetuate current security vs. performance trade-offs.
Finding new approaches to improving security performance in the UNIX
model is a key concern going forward.

Conclusion

Capsicum is a blending of capability-oriented security with UNIX APIs
and performance. Capsicum provides OS foundations that applications
can use to compartmentalize themselves with stronger confinement
properties and, in some cases, better performance than existing sandboxing
techniques. Capsicum is not a replacement for Discretionary or Mandatory
Access Control, but we believe that it is superior to them as a platform for
application self-compartmentalization.

Much still remains to be done—in some ways, Capsicum is just a platform
for more interesting research in systems, programming, and UI security—
but we believe that this is a very promising first step.

The Capsicum API and FreeBSD-based prototype are both available today
under a BSD license, and more information can be found at http://www
.cl.cam.ac.uk/research/security/capsicum/. Capsicum is intended for
inclusion in mainline FreeBSD 9.

ACKNOWLEDGMENTS

The authors wish to gratefully acknowledge our sponsors, including Google,
Inc., the Rothermere Foundation, and the Natural Sciences and Engineering
Research Council of Canada. We would further like to thank Mark Seaborn,
Andrew Moore, Joseph Bonneau, Saar Drimer, Bjoern Zeeb, Andrew
Lewis, Heradon Douglas, Steve Bellovin, and our anonymous reviewers for
helpful feedback on our APIs, prototype, and paper, and Sprewell for his
contributions to the Chromium FreeBSD port.

REFERENCES

[1] E. Cohen and D. Jefferson, “Protection in the Hydra Operating System,”
SOSP ’75: Proceedings of the Fifth ACM Symposium on Operating Systems
Principles (ACM, 1975), pp. 141–60.

[2] R.M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
Practical Capabilities for UNIX,” in Proceedings of the 19th USENIX Security
Sympoisum (USENIX, 2010), pp. 29–45.

[3] C. Reis and S.D. Gribble, “Isolating Web Programs in Modern Browser
Architectures,” EuroSys ’09: Proceedings of the 4th ACM European Conference on
Computer Systems (ACM, 2009), pp. 219–32.

[4] P. Loscocco and S. Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System,” Proceedings of the FREENIX Track:
USENIX Technical Conference (USENIX, 2001), pp. 29–42.

; LO G I N : D ECEM B E R 201 0 I NTRO DUCI N G C A P SI CUM : PR AC TI C A L C A PA B I L IT I ES FO R U N IX 17

[5] “The Chromium Project: Design Documents: OS X Sandboxing Design”:
http://dev.chromium.org/developers/design-documents/sandbox/
osx-sandboxing-design.

[6] R. Watson, B. Feldman, A. Migus, and C. Vance, “Design and
Implementation of the TrustedBSD MAC Framework,” in Proceedings of
the 3rd DARPA Information Survivability Conference and Exhibition (DISCEX)
(IEEE, April 2003).

