
2 ; LO G I N : VO L . 35, N O. 6

R I K F A R R O W

musings
Rik is the Editor of ;login:.

rik@usenix.org

I ’ V E B E E N A C C U S E D , R I G H T LY, O F B E I N G
pessimistic about computer security, and
recent events have only increased that
pessimism. But rather than tire you with
my grumblings, I thought I would take a
dispassionate look at computer security
as it exists today and make positive
suggestions about what you might do,
whether in your professional or personal
lives.

I’ll start out with something you might find
surprising, considering the source: if you, or
people you know or work with, use Windows
XP, convince them to upgrade. The same goes for
people using anything earlier than Server 2008.

Microsoft began its Trustworthy Computing
Initiative in 2002 and has paid much more
attention to security in recent years. Some of the
fruits include more reactive security measures,
such as DEP (data execution prevention) and ASLR
(address space layout randomization), although
these are not used in all applications. Internet
Explorer 7 prior to SP1 is one of those applications
that is not protected with either DEP or ASLR for
application compatibility, but later versions are, as
is IE8.

Both IE7 and IE8 also rely on Integrity Levels [1],
an ACL mechanism where less trusted processes,
such as Web browsers, get run with a low integrity
level. Processes with low integrity levels have
limited or no access to files, processes, or other
objects (e.g., registry keys and named pipes) at
higher integrity levels—which means, most of the
system.

These are good things. I kept hearing from my
friends in security that Windows had gotten a
lot more secure—but they wouldn’t or couldn’t
provide strong evidence that these mechanisms
actually help. Then I learned from Niels Provos,
whose Google team searches the Web for malicious
sites, that it was much more difficult for most
exploits to work with IE7 or IE8. While his team’s
goal is to find pages that lead to exploits on any
version of Windows, I found this interesting news,
as they actually test hundreds of millions of pages
in their Windows equipped sandboxes (see “The
Nocebo Effect,” p. 18).

Crispin Cowan, the inventor of stack canaries,
also known for Immunix and AppArmor, began
working for Microsoft in 2008. Cowan spoke at
the 2010 USENIX Security Symposium, allegedly

; LO G I N : D ECEM B E R 201 0 MUSI N GS 3

about the security features of Windows 7 but actually about how Microsoft
had sometimes been the first vendor to include new security features. I
have it on good authority [2] that such talk is security theater, but you can
watch the video of his presentation and decide for yourself [3]. You can also
read the summaries of his talk and that of Roger Johnston, the person who
describes Cowan’s talk as security theater, in this issue.

One point Cowan made that really struck me was this: in 2010, the number
of applications that needed administrative privileges to run had been
reduced from 900,000 to just 180,000 (49 minutes into the video). I was
dumbstruck.

I always knew there were lots of Windows applications, but that there are
nearly two hundred thousand that need to run as root just astounded me.
Cowan works as a senior project manager on User Access Control, what he
called “the moral equivalent of sudo.” So running these apps requires sudo
to the admin group. You might not need to run any of these apps, but now
you know what UAC is doing for you, or allowing these apps to do to your
system.

Dark Side

So Windows has its dark side. We’ve always known that. The need for
running apps with privileges has to do with the history of Windows
NT, which Cowan also covered earlier in his talk. In 1995, NT had no
applications, so by adding the Windows 32-bit API libraries to NT, there
were suddenly many thousands of applications. Unfortunately, there were
also many, many millions of lines of old code, not written with security in
mind.

We still have patch Tuesday, as well as security excitement for all operating
systems. None of this will be going away, as the number of programmers
capable of writing mostly secure programs is extremely limited. At a past
security symposium, a speaker suggested during a WiP that there were only
two such programmers, Wietse Venema and Daniel Bernstein. I think this is
an exaggeration, leaving out other outstanding programmers. But the point
is that most programmers are not particularly good, and certainly not good
at security.

At the same time, people are encouraged to write programs. Microsoft’s
very success is tied to its vast number of applications. But so is Microsoft’s
greatest weakness: maintaining backward compatibility so that it doesn’t
lose this asset. This is a problem for all systems today, as adding software—
say, a cool PHP-powered Web site—to a server is easy. None of this is news.

Is Windows 7 safe to use? It is safer, but not safe. For example, the ZeuS
botnet has been in the news as I write [4], and this criminal tool includes
exploits for Vista and 7 [5].

Being safe on the Web today is still difficult. I suggest booting Linux (or a
BSD) from a CD or write-protected USB stick and using this for your must-
be-secure browsing, such as banking. Next best is to avoid the most popular
platforms, such as Windows and Mac, and stick with something obscure like
FreeBSD (if you can get the financial site to work with Firefox). Note that
malware is starting to appear on smartphones, so banking online using your
handheld device may not be safe either. Am I paranoid? Yes, I am paranoid,
especially when I recently learned that a security friend lost $35,000 from
his bank account.

4 ; LO G I N : VO L . 35, N O. 6

If you are running a server, consider using tools such as SELinux to sandbox
the server’s applications. While type-enforcement mechanisms will not
protect a server from bugs within itself, such as SQL injection, it will prevent
exploits from escaping the application in most instances. Then again, Linux
kernel exploits may be designed to bypass, or even abuse, SELinux in the
exploit [6].

A Better Sandbox

Robert Watson, a key contributor to the FreeBSD kernel and, by association,
to Mac OS X, has created a different way of sandboxing applications.
Working with a colleague at the University of Cambridge and two people at
Google, Watson developed Capsicum, a capability-based sandbox.

I found a couple of things interesting about Capsicum. First, it attempts to
make life simpler for the programmer. Its basic principle involves severely
limiting access to the operating system’s namespace: files, IPC, shared
memory, and even network access. The capabilities used in Capsicum
are, for example, open files. Once an application enables Capsicum,
only already open files, or files within an already open directory, can be
accessed. Capsicum can also work in programs that split privilege levels,
such as OpenSSH sshd. The privileged part of a Capsicum-enabled program
maintains access to the system namespace and can share capabilities, such
as open files or network connections, with the constrained fork of the
program.

Capsicum also places the security policy for an application within the
application itself. Using SELinux or Microsoft’s Integrity Levels and ACLs
means that a large portion of an application’s security policy exists in system
configuration—for example, in Type Enforcement and File Context rules in
SELinux. With Capsicum, upgrading a program’s security policy is done by
upgrading the program, without needing to change system security policy.

The Lineup

Robert Watson, Jon Anderson, Ben Laurie, and Kris Kennaway start off
this issue by explaining Capsicum in more detail. Their article compares
Capsicum with other forms of sandboxing, as used in Chromium, as well as
providing an example of securing tcpdump by dropping privileges after they
are no longer needed.

Next up, Moheeb Rajab, working with a team of Google security engineers,
updates us on a trend in malware. I’ve asked Niels Provos to write about
his team’s activities in the past, and this time Rajab explains that their data
clearly shows an increase in the amount of exploits designed to trick people
into installing fake antiviral software. I know people who have been fooled
by this; I convinced one of them to install Linux instead of reinstalling
Windows and buying AV.

Dan Geer, who as Invited Talks co-chair at USENIX Security help to
serve up an excellent list of speakers, reprises his own invited talk.
Geer ponders the problem created by standards, especially when the
protocols they describe are so complex that everyone ports the reference
implementation. The result is a form of monoculture, where most, or even
all, systems include the same bugs. We have seen this most recently in TLS
renegotiation, a protocol that appears in embedded systems as a security
feature.

; LO G I N : D ECEM B E R 201 0 MUSI N GS 5

I saved the hardware security article for last, as some may find it a deep
dive. Matthew Hicks and co-authors write about their design for working
around hardware that includes suspicious circuits. In an earlier paper
[7], King et al. showed how they could add circuits to a SPARC CPU
that provided a foothold in a system that could easily lead to complete
compromise. In this article, Hicks et al. explain how to detect potentially
malicious circuits and provide workarounds in software, allowing a
system found to include malicious circuits to be patched in the field. I do
recommend that you read this article if you wish to learn more about the
problem of hardware that may include malicious designs, and a possible
solution.

David Blank-Edelman takes us on a utilitarian journey of modules that
provide, well, utilities. How practical, and useful as ever.

Peter Galvin begins to explore alternatives to Solaris in the first of a two-
part column. In this issue, Galvin compares and contrasts what he considers
the most likely contenders to Solaris in enterprise-level computing: Linux
and AIX. Yes, I wrote AIX, and don’t write off this unusual UNIX variant
without a closer look.

Dave Josephsen explores Ganglia, a tool for monitoring clusters of systems.
Josephsen obviously likes Ganglia (enough), partially for the ease of
configuring clients and for its lightweight footprint.

Robert Ferrell ponders the intent of a hardware manufacturer who is selling
CPUs with key features disabled—but will enable them if you are willing to
pay a ransom.

Elizabeth Zwicky gets into the Christmas spirit, including reviews of two
cooking books and a LEGO book, as well as two technical books. I had
also read Cooking for Geeks and would have called it Cooking for Hackers, as
it is full of the type of details I wanted to find out years ago. I also wrote
a review on a book you may consider buying as a gift for someone, Your
Money: The Missing Manual. Sam Stover reviewed our only security book this
time, Inside Cyber Warfare, and it sounds like an interesting and quick read.

We have reports on the 2010 USENIX Security Symposium, as well as
reports for three of the seven workshops that were co-located with Security.
We also have a summary of NSPW, an interesting security workshop with
very limited attendance.

I am not really worried about depressing you when it comes to news about
security. If you aren’t depressed, something is wrong with you, or you just
haven’t been paying attention.

Stuxnet, a bit of very competently designed malware aimed specifically at
Siemens S7 control systems used in Iran, has been in the news as I muse [8].
Stuxnet, spread via USB sticks, includes four Windows zero-day exploits and
two signed device drivers, using keys stolen from two companies in Taiwan.
The malware is carefully written, so that it never crashes the systems it
infects, never communicates with its creators, and only causes havoc when it
detects it is running on the S7 systems installed in very specific applications.

In other words, Stuxnet appears to be the first shot in a “cyber war”—a term
I hate, but I don’t know what else fits. And now that the cat is out of the
bag, I expect we will begin to see copycat attacks take down other SCADA-
controlled systems, with the developed world, particularly the United States,
being particularly vulnerable.

When computer systems were first used, they were terribly expensive and
carefully isolated systems. As this changed in the 1980s, people were just

6 ; LO G I N : VO L . 35, N O. 6

happy to have computers they could afford. In the 1990s, prices of systems
began to plummet, with the first under-$1000 system appearing around
2000. Now you can buy a netbook for under $400 and smartphones more
powerful than a 1980 Cray. None of this history includes a mandate for
secure computing.

Building secure computer systems requires a complete redesign of both
software and hardware, and this isn’t going to happen overnight. I do see
some things I like, such as SeL4, type-safe languages, and experimental
multicore designs such as the Single Chip Cloud. But restarting computer
science, where security is built in and unavoidable, instead of an added-later
feature, is still years away.

REFERENCES

[1] Integrity Levels, used in Vista and Win2008 and later: https://secure
.wikimedia.org/wikipedia/en/wiki/Mandatory_Integrity_Control.

[2] Roger Johnston, Editor’s Notes, Journal of Physical Security, vol. 4, no. 2
(2010): http://jps.anl.gov/v4iss2.shtml.

[3] Crispin Cowan, “Windows 7 Security from a UNIX Perspective”: http://
www.usenix.org/events/sec10/stream/cowan/index.html.

[4] ZeuS bot installed using LinkedIN spam: http://www.thestar.com/news/
gta/crime/article/869704--email-attack-targeting-linkedin-users-termed
-largest-ever.

[5] ZeuS for Windows 7: http://www.secureworks.com/research/threats/
zeus/?threat=zeus.

[6] Cheddar Bay Linux kernel exploit: http://lwn.net/Articles/341773/.

[7] Samuel T. King et al., “Designing and Implementing Malicious
Hardware,” Proceedings of the First USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET ’08), April 2008.

[8] Stuxnet May Be Targeting Iran’s Nuclear Sites: http://www.bloomberg
.com/news/2010-09-24/stuxnet-computer-worm-may-be-aimed-at-iran
-nuclear-sites-researcher-says.html.

