
100	 ; LO G I N : 	VO L . 	35, 	N O. 	5

2nd Workshop on Hot Topics in Storage and
File Systems (HotStorage ’10)

June 22, 2010
Boston, MA

don’t worry, your data is safe with fl ash

Summarized by Rik Farrow (rik@usenix.org)

■■ Removing the Costs of Indirection in Flash-based SSDs
with Nameless Writes
Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau,
 University of Wisconsin—Madison; Vijayan Prabhakaran,
Microsoft Research

Remzi Arpaci-Dusseau began with a quote attributed to
Butler Lampson: “All problems can be solved . . . by another
level of indirection.” He went on to list the many uses in
operating systems of redirection, such as virtual memory,
RAID, and VMMs. But indirection introduces performance
issues as a side effect. Arpaci-Dusseau said that the target of
this research is the Flash Translation Layer (FTL), an abuser
of indirection.

FTLs use indirection because writing to flash requires writ-
ing only to erased pages, and erasing a page takes millisec-
onds, not microseconds. FTL hides this latency by writing
to a log. Arpaci-Dusseau presented the authors’ main idea:
nameless writes. Instead of attempting to write to a particu-
lar block on a flash device, the data is written to the device.
On completion of the write, the device returns the physical
location of the block written. Someone asked about han-
dling wear-leveling, and Arpaci-Dusseau responded that the
device would upcall into the client, updating the physical
location. Randal Burns vehemently disagreed, saying that
causes all sorts of problems, and Arpaci-Dusseau agreed
with Burns. But then he said he still thought this is a good
idea. He then pointed out that every write cannot be name-
less, as there must be some known beginning address. The
device must also be willing to share some low-level infor-
mation.

Chris Small pointed out that all performance problems
can be solved by removing indirection as a corollary to the
opening quote. Then Small worried that making flash too
dumb might cause problems. Arpaci-Dusseau agreed that
there must be some information stored within the flash, for
example, for wear-leveling. Peter Desnoyers didn’t consider
wear-leveling the big issue, but instead thought that garbage
collection was more of a problem. Arpaci-Dusseau said he
worried about this too, but didn’t have a solution for this
yet. Someone suggested adding new interfaces that handle
resource allocation.

■■ Depletable Storage Systems
Vijayan Prabhakaran, Mahesh Balakrishnan, John D. Davis, and
Ted Wobber, Microsoft Research Silicon Valley

Vijayan Prabhakaran pointed out that, traditionally, space
is the major constraint in storage, but in SSDs, the primary

issue is the number of erasures. Ideally, the lifetime of a
device would be the product of the size of the device times
the number of erase cycles, but wear-leveling reduces this
in practice. When using flash, write patterns also influence
wear: for example, sequential block-sized writes compared
to small random writes.

In response, Prabhakaran suggested that we need depletion-
aware resource management. This would allow predictable
replacement based on the lifetime of a device, a way to
charge users for usage and to compare designs that reduce
depletion, and to deal with new attacks against devices that
reduce lifetime. Prabhakaran listed two challenges: many
layers in file systems, such as caching, journaling, schedul-
ers, and RAID; and media heterogeneity, such as SLC vs.
MLC with different performance and erasure limits. Their
solution is to introduce a VM that isolates applications from
the device, minimizing the layers before issuing writes to an
SSD.

Dan Peek from Facebook wondered if doing this would hide
important details from the application writing that need to
be exposed. Prabhakaran agreed that this was the right way
to do things, but wondered what metrics should be exposed
to applications. Peter Desnoyers continued on this theme,
using Intel’s high-end SSD, which has 80GB of flash but
only exposes 64GB, as an example. Desnoyers wondered
how much information needs to be exposed. Prabhakaran
said that as a community, we need to provide a set of tech-
niques to expose this data. Someone else asked if they had
disabled caching, and Prabhakaran said that they had tried
their experiments both ways, with caching enabled and
disabled.

■■ How I Learned to Stop Worrying and Love Flash Endurance
Vidyabhushan Mohan, Taniya Siddiqua, Sudhanva Gurumurthi,
and Mircea R. Stan, University of Virginia

Vidyabhushan Mohan explained how stress events affect
both the retention and endurance of flash. Flash memory
can only be written to after being erased, so a stress cycle
consists of write (program)/erase cycles (P/E). Most research
on flash use utilizes manufacturer datasheets to calculate
endurance, but recent papers on NAND flash chip measure-
ments hint at a much higher endurance. An important but
overlooked factor in flash endurance is a recovery process
which occurs during the time between stress events and al-
lows partial healing of a memory cell.

The authors designed a simulation that takes the time for
recovery into account, while modeling the device physics
and applying write traces from four different server appli-
cations: EXCH, LM, RADIUS, MSNFS. Using these traces,
they could calculate the amount of recovery time between
stress events and use this to calculate the number of P/E
cycles under each workload. What they found is that endur-
ance could be increased by two orders of magnitude with
recovery times on the order of a couple of hours, and this
occurred with all their example workloads. Their conclu-

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 101

sion was that SSDs are durable enough to support enterprise
workloads, although this should be examined using real
enterprise workloads.

Remzi Arpaci-Dusseau said he had hundreds of questions,
but asked just one: is there a measurable difference with
bandwidth and performance? Mohan responded that you
can see better performance with newer (less stressed) mem-
ory. Arpaci-Dusseau then asked, “Add capacity in the SSD
to spread out the load more?” Mohan said yes, this improves
both performance and endurance. Someone asked if they
had talked to vendors about this, and Mohan said they had.
He then asked if endurance also depends on implementa-
tion of the hardware, and Mohan said yes. The same person
asked about the vendor endurance numbers, and Mohan
said they are worst-case estimates, created by testing SSDs
in ovens. Peter Desnoyers said that this is exciting work,
and he wondered if adding error detection could extend
SSD life even further. Mohan said that bit error rate does
increase after a few million cycles.

out with old (r aid)

Summarized by Aleatha Parker-Wood (aleatha@soe.ucsc.edu)

■■ Block-level RAID Is Dead
Raja Appuswamy, David C. van Moolenbroek, and Andrew S.
Tanenbaum, Vrije Universiteit, Amsterdam

Raja Appuswamy presented a modular file system stack
called LORIS, which inverts the conventional file system/
RAID stack, moving RAID-like file multiplexing into the
logical layer, instead of the block layer. This allows the
physical layer to implement parental checksumming on all
blocks, rather than RAID being allowed to propagate cor-
ruption into the parity blocks.

LORIS divides the software system into a fully modular
stack. At the physical layer, metadata caching, checksums,
and on-disk layout are handled. Above that is a logi-
cal layer, which handles RAID and logical policy storage,
and has a mapping file which maintains all of the policy
information, such as the RAID level, the stripe size, and the
file identifier. The caching layer is responsible for caching
data, as usual. Finally, the naming layer handles POSIX call
processing and manages directories.

LORIS uses a unique ID and a set of attributes for each file,
which are fully shared between all layers. Any layer can get
or set an attribute, and files are referred to by their common
ID. Because of this shared infrastructure, any layer can set
policy information. Because RAID is in the logical layer,
it can be file aware, rather than block aware, and there-
fore can implement these policies in an intelligent fashion.
LORIS offers a clean stack abstraction which allows more
intelligent error handling for RAID, and allows other com-
ponents of the stack to be swapped out at will, opening up
new possibilities for filesystem designers.

Chris Small from NetApp asked how this was different
from what NetApp currently does. Appuswamy replied that
LORIS has the ability to isolate changes in the file system to
a single layer, rather than being tightly integrated through-
out the stack. Remzi Arpaci-Dusseau asked why they were
stopping before the hardware layer, noting that there’s a lot
of abstraction that goes on in the hardware level and they’re
moving away from the common interface. He asked what
kind of interfaces they would like to see at the lower layer.
Appuswamy replied that because LORIS is a pure stack, any
number of the layers could be moved into the hardware. For
instance, hardware could move to an object-based interface
without disrupting the stack.

■■ Mean Time to Meaningless: MTTDL, Markov Models, and
Storage System Reliability
Kevin M. Greenan, ParaScale, Inc.; James S. Plank, University of
Tennessee; Jay J. Wylie, HP Labs

Kevin Greenan presented a new reliability metric, called
NOrmalized Magnitude of Data Loss (NoMDL). Greenan
argued that mean time to data loss (MTTDL) is a metric
which is meaningless and misleading. In the authors’ opin-
ion, a good reliability metric should be calculable, mean-
ingful, understandable, and comparable. In other words, it
should be generable using a known and understood method
(such as closed form equations, or simulation), relate to real
world systems, and be possible for system owners to under-
stand and use to compare systems.

MTTDL is easy to calculate, since it relies on Markov
models, which can be calculated in closed form. However,
Greenan noted some flaws in the meaningfulness of the
model. For instance, since Markov models are memory-
less, the model completely ignores hardware aging. Every
time a hard drive is replaced, the model assumes that all
remaining hardware is in perfect condition. This does not
accurately reflect reality. Likewise, MTTDL often is applied
in a sector-failure-agnostic way. Even if sector failures are
accounted for, Markov models do not describe the “critical
mode” of a system, where additional sector failures during
rebuild may cause data loss, depending on their location.
Since the probability of data loss declines continually over
the rebuild period, it is challenging for a Markov model to
describe. Finally, MTTDL is a metric which only answers
the question, “When will I lose data?” and not “How much
data will I lose?” The authors argue that the latter is a more
useful and important question to answer.

Greenan proposed NOrmalized Magnitude of Data Loss
(NoMDL) as a replacement for MTTDL. NoMDL avoids
some of the flaws of MTTDL and aims to answer the ques-
tion “How much data will I lose?” by relying on Monte
Carlo simulation, a popular statistical technique. The
authors have built a framework for modeling drive failure
and made it available for other researchers to use. It uses a
“mission time” (such as the 15-year expected lifespan of a

102	 ; LO G I N : 	VO L . 	35, 	N O. 	5

system) and a number of simulation iterations to return an
expected amount of data lost at the end of the time span.
Comparing it to other metrics, Greenan noted that their sys-
tem is the only one which is system-agnostic and provides a
magnitude of failure.

Randal Burns from Johns Hopkins noted that an answer
such as 14 bits is still not meaningful, because systems
lose data in large chunks or not at all. Greenan replied that
the simulator can actually return a histogram of data loss.
Randal retorted that the final output was still a metric. Jim
from EMC said that a lot of people associate MTTDL with
lifetime, which is clearly inaccurate. Michael Condict from
NetApp noted that Greenan was arguing against MTTDL for
a single device, and he asked why the regenerative model
was bad for a whole system. He suggested that they just
change the model to say that the device is halfway through
the lifespan. Greenan replied that that still wouldn’t be
accurate, because the system as a whole is aging, not just
an individual device. Empirical testing suggested that just
artificially aging the device in the model yielded unrealistic
results.

■■ Discussion Panel
The session chair, Arkady Kanevsky, kicked off the discus-
sion panel by asking whether RAID was even relevant any
more, given that failures are now known to be highly cor-
related. Greenan replied that block-level RAID is dead be-
cause of rebuild time. The window of vulnerability is getting
bigger and bigger. Distributed RAID will make more sense,
because the system can spread the load out. Appuswamy
replied that by imparting semantic knowledge to the RAID
layer, many things become possible. Search-friendly name
schemes require a full rethinking of RAID, which requires
an abstraction layer.

Ric Wheeler, addressing Greenan, noted that soft errors in
hard drives are found via pro-active scanning, which offsets
second drive failure problems. Greenan asked whether a
higher-level process which was checking the errors would
have the information to fix the errors. Wheeler replied that
the information was available at the block level, since things
like trim commands have a notion of which blocks are alive.

Jiri Schindler asked Greenan to give an argument that his
model was a more general one than the one used by Elerath.
Greenan replied that Elerath’s model was specific to Weibull
distributions, where their package allows them to plug in
distributions. He also noted that Elerath was focused very
specifically on a RAID 4 array, where theirs can take an
arbitrary erasure code.

Michael Condict from NetApp noted that one of the benefits
of MTTDL was the ease of calculation and asked Greenan
what the inputs to his model were and whether his model
was easy to calculate. Greenan said that the model was
available already and that MTTDL didn’t allow anything ex-
cept a Markov model. Condict then asked whether he could

input more intelligent data into the model if it was avail-
able. Greenan noted that it was possible to apply a Markov
model in that way, but that it was very difficult and some-
what inaccurate. They chose simulation because it was more
accurate and required less work for the systems engineer
versus creating a very complex Markov model.

sc aling up, virtually

Summarized by Aleatha Parker-Wood (aleatha@soe.ucsc.edu)

■■ KVZone and the Search for a Write-Optimized Key-Value
Store
Salil Gokhale, Nitin Agrawal, Sean Noonan, and Cristian
 Ungureanu, NEC Laboratories America

Nitin Agrawal presented Alphard, a write-optimized local
key-value store, and KVZone, a benchmarking tool for
testing key-value stores. There are a variety of existing key-
value stores, but benchmarking tools for key-value stores
significantly lag behind development, and there has been no
head-to-head comparison. The authors needed a low latency
local key-value store to back their content-addressable file
store, HydraStore, and therefore set out to benchmark exist-
ing key-value stores to find a suitable candidate.

KVZone is a benchmark specifically optimized for testing
local key-value stores. It generates key-value pairs based
on a specified set of properties. Key lifetimes and a mix of
operation probabilities, such as a workload which is 60%
reads, 20% writes, and 20% deletes, can be specified. The
rate of requests can be specified in terms of either through-
put or latency. Finally, KVZone can take an already existing
key-value state to warm up the key-value store, in order to
evaluate a particular real-world situation.

The results of their testing suggested that even the most
performant of key-value stores operated at less than 40% of
their raw device throughput. This was inadequate perfor-
mance for HydraStore, which led them to create their own
key-value store, Alphard. Alphard was specifically created
with local, write-intensive workloads in mind and was op-
timized for SSDs. Some of the optimizations include direct
I/O, block-aligned I/O, and request coalescing, as well as
including metadata with key-value pairs to maximize the
effectiveness of single writes. Alphard uses a logically cen-
tralized queue, with multiple physical queues and worker
threads, in order to bring operations as close as possible
to one synchronous I/O per key-value operation. Alphard
achieves very close to device performance under their write-
intensive workload.

Chris Small from NetApp noted that comparing a mul-
tithreaded KVS versus single-threaded KVS was not an
apples-to-apples comparison. Agrawal replied that they were
specifically focused on the properties of each key-value store
under the required workload, rather than redesigning exist-
ing key-value stores. Ric Wheeler asked about the trade-offs

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 103

for durability and whether Alphard was durable. Agrawal re-
plied that they did care about durability. Writes are persis-
tent to the media, and mirrored. Mirroring requires a 3–5%
overhead. Were there any insights about key-value stores
in general that could be distilled from the authors’ work,
and why had they chosen an asynchronous interface? The
asynchronous interface gave them the ability to coalesce
operations into a single I/O. Also, since they were dealing
with an asynchronous interface to the device, it preserved
the semantics of the FS.

■■ Rethinking Deduplication Scalability
Petros Efstathopoulos and Fanglu Guo, Symantec Research Labs

Petros Efstathopoulos presented a highly scalable system
for deduplication, designed to scale to one hundred billion
objects, with high throughput. The authors were willing
to sacrifice deduplication performance in order to achieve
near-raw-disk performance.

The conventional approach to scaling deduplication per-
formance has focused on using larger and larger segment
sizes. However, this reduces the quality of deduplication
and creates problems for reference management. The larger
the segment size, the more catastrophic a deletion error or
a lost reference is. In addition, the system still needs to be
fast. The authors propose to use a sub-sampling technique,
which they call progressive sampling.

The system creates a sample index, which is maintained
in memory. The sampling rate is a function of the memory
size, the size of each segment entry, and the total number of
segments. When memory is plentiful, everything is indexed.
However, as the system runs low on space, the sampling
rate is progressively reduced. A purely random sampling
strategy will result in decreased performance, so the system
uses a fingerprint cache to take advantage of locality. In ad-
dition to the sample index, a full deduplication index is cre-
ated and checkpointed to disk. Finally, the authors propose
using SSDs for a fingerprint index, allowing memory to be
used purely for caching and bloom filters which summarize
the SSD index.

The final challenge in deduplication is reclaiming resources.
Reference counting is simple, but challenging to make
resilient in the face of failure. A reference list makes it pos-
sible to identify which files use which segments, but doesn’t
handle lost updates and is prohibitively expensive to scale
up. Mark-and-sweep is another popular garbage collec-
tion technique, but this has a workload proportional to the
capacity of the system, which is too slow at the petabyte
scale. The authors propose a group mark-and-sweep, which
improves the performance. The system tracks changes
to a group and re-marks changed groups. If nothing has
changed since the last iteration, mark results are saved and
reused. This results in a workload which is a function of the
work done since the last mark-and-sweep, rather than the
size of the system.

Michael Condict from NetApp asked how the system de-
cided which fingerprints to keep and which to discard to
disk. Efstathopoulos replied that they just picked every nth
segment. Condict suggested that they consider Extreme Bin-
ning as a complement to their work. Efstathopoulos noted
that Bhagwat et al. were using Extreme Binning as a method
for identifying super-segments. Condict noted that this
method might improve the chances of the system having
a hit. Dutch Meyer from the University of British Colum-
bia asked how the system determined what constituted a
group for their mark-and-sweep approach. Efstathopoulos
replied that groups were composed of one or more backups
of a system. Finally, Meyer asked if they had tried refer-
ence counting as a heuristic on their cache. Efstathopoulos
replied that they had tried a variety of heuristics, and con-
cluded that the overhead wasn’t worth it.

■■ TrapperKeeper: The Case for Using Virtualization to Add
Type Awareness to File Systems
Daniel Peek, Facebook; Jason Flinn, University of Michigan

Daniel Peek from Facebook presented TrapperKeeper, a
method for extracting rich metadata from files without
requiring file type creators to write plugins for every file
system and search system. Rich metadata is the holy grail
for designers of search systems. Unfortunately, extensions
follow a long-tailed distribution, and it is uneconomical for
either search systems or applications to support every file
type in existence. Popular file types are well supported, but
less popular file types are unlikely to be.

TrapperKeeper utilizes the already implemented behavior
of applications to parse files, in order to capture metadata.
It runs applications in a virtual machine environment. By
opening a dummy file and then taking a snapshot at the
moment of the open() call, the system can guarantee that
the application is about to parse a file. When parsing behav-
ior is needed, the VM can be restarted, and a real file can be
substituted for the dummy file that was about to be in-
voked. From the application’s point of view, this is seamless.

The next challenge is using the application to extract key-
value pairs. However, most applications implement the ac-
cessibility APIs bundled with operating systems. By leverag-
ing these and applying a variety of heuristics, the system
can automatically detect tables, labels, and so on. Alterna-
tively, the user can do manually guided extraction, which
the system will cache for later use on other files of that type.

Someone raised a number of open questions about the
system, which Peek noted were valid future work areas. For
instance, what if the application has no accessibility support
or does not expose metadata? What if the application needs
external information, such as configuration files, in order
to parse the input? One audience member suggested that a
hybrid approach might be best, where plugins are used for
the most common file types, but TrapperKeeper is used for
the long tail.

104	 ; LO G I N : 	VO L . 	35, 	N O. 	5

■■ Discussion Panel
The session chair, Ric Wheeler, started the discussion by
asking each of the panelists how scalable they would like
their systems. Peek replied that he worried both about
system performance and human scalability. He wanted to
avoid duplication of effort, such as multiple users creating
parsing behavior for the same file types. Agrawal replied
that he wanted to push the limits of Alphard and make it ef-
fective as a scalable store, as well. Efstathopoulos noted that
scalability doesn’t always rely on a new idea. The design
principles are well known, but not always applied. Systems
often aren’t built with those in mind; sometimes the system
designer has to go back and build it right later on.

Someone asked Efstathopoulos whether his system was pro-
cessing directed acyclic graphs for garbage collection or was
just a single level deep. Efstathopoulos replied that they had
a flat space for garbage collection, where the storage group
container has an ID and containers have chunks.

Someone asked Agrawal what the guarantees were that
Alphard provided, from the time the client uses the system
until the data is safely on disk. The questioner noted that
coalescing writes just made matters worse and that there
was an opportunity for something to go wrong while a
request was in the queue. Agrawal replied that the actual
interface didn’t return until the data was safely committed,
so while the system was asynchronous in implementation,
the interface was, in fact, synchronous.

Another audience member asked whether the move to
key-value stores would inhibit or help accessibility of rich
metadata. Peek replied that right now there was no special-
ized file system handling for indexes, so a key-value store
would have little impact. Efstathopoulos replied that there
was a constant tug-of-war between specialized and general
file systems. Agrawal added that system designers should
think about what they actually want in a file system and
design around it, rather than vacillating between extremes,
as system designers realize they’re missing key pieces each
time they jump on a new technology.

Finally, someone asked about the differences between usage
for key-value stores versus databases, noting that databases
offer a many-to-many relationship, where key-value stores
are strictly one-to-one, or one-to-many. Agrawal replied that
he normally only used one or two keys, and that in practice
data is often sharded across multiple databases, such that
complex join operations, while possible in theory, are rarely
used in practice.

all aboard hms beagle

No reports are available for this session.

■■ Fast and Cautious Evolution of Cloud Storage
Dutch T. Meyer and Mohammad Shamma, University of Brit-
ish Columbia; Jake Wires, Citrix, Inc.; Quan Zhang, Norman
C. Hutchinson, and Andrew Warfield, University of British
 Columbia

■■ Adaptive Memory System over Ethernet
Jun Suzuki, Teruyuki Baba, Yoichi Hidaka, Junichi Higu-
chi, Nobuharu Kami, Satoshi Uchida, Masahiko Takahashi,
 Tomoyoshi Sugawara, and Takashi Yoshikawa, NEC Corporation

■■ Discussion Panel

Configuration Management Summit

June 24, 2010
Boston, MA

Summarized by Aleksey Tsalolikhin
(aleksey.tsalolikhin@gmail.com)

On Thursday, June 24, USENIX hosted the first Configura-
tion Management Summit, on automating system adminis-
tration using open source configuration management tools.
The summit brought together developers, power users, and
new adopters. There are over a dozen different CM tools
actively used in production, and so many choices can be-
wilder sysadmins. The workshop had presentations of four
tools, a panel, and a mini-BarCamp. This summary covers
the four tool presentations and includes some brief notes on
the BarCamp.

■■ Bcfg2
Narayan Desai thinks of configuration management as an
API for programming your configuration. Bcfg2’s job is to be
configuration management “plumbing”—it just works.

Centralized and lightweight on the client node, each server
can easily handle 1000 nodes.

Bcfg2, pronounced be-config-two, uses a complete model of
each node’s configuration, both desired and current. Models
can be compared (with extensive reporting on differences),
or you can designate one node as exemplar and its configu-
ration will be imposed on other nodes.

To facilitate learning, the Bcfg2 client can be run in dry-run
(no changes, print only), interactive (are you sure you want
to do this?), and non-interactive modes.

Bcfg2 supports extensive configuration debugging to help
the sysadmin get to the bottom of things quickly, with full
system introspection capability (why is Bcfg2 making the
decisions that it is?).

Strengths: Reporting system. Debugging.

Weaknesses: Documentation (new set of documentation
is coming out now, but still weak in examples). Sharing

