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Summarized by James C. Jenista (jjenista@uci.edu)

■■ Towards Parallelizing the Layout Engine of Firefox
Carmen Badea, University of California, Irvine; Mohammad R. 
Haghighat, Intel Corporation; Alex Nicolau and Alexander V. 
Veidenbaum, University of California, Irvine

Multicore is ubiquitous and the browser is becoming a thin 
client to run a wider range of applications. Carmen Badea 
argued, therefore, that it is worthwhile to explore the paral-
lelism in browsers.

Badea explained that Firefox was chosen because it is open 
source and has the second highest browser market share. 
They profiled Firefox and discovered that 40% of the test 
execution time was spent in the layout engine and 32% of 
that time is devoted to CSS rule matching. This led to a 
parallelization effort of the CSS rule matching subsystem. 
After giving a brief background for CSS, Badea explained 
that CSS rule matching executes when a user loads a new 
page or a page is interactively updated. The Mozilla Firefox 
page load tests and Zimbra Collaboration Suite (ZCS) were 
employed as benchmarks to profile the CSS rule-matching 
system; descendant selector rules were executed most often, 
and the vast majority resulted in a non-match.

They decided to parallelize the common descendant rule 
case of non-match by executing rules for batches of ances-
tors of an element concurrently. When there is a rule match, 
some of the work is speculative and therefore discarded, 
although Badea argued that the profiling data implies this 
case is infrequent. Dan Grossman asked how many rules 
are being matched in the parallel implementation, and 
Badea answered that only one rule is matched at a time. She 
explained that the code base is factored this way, although 
future work could explore a parallel implementation that 
matched many rules at once.

The parallel CSS rule matcher was tested in seven configu-
rations for ZCS and in 12 configurations for the Mozilla 
test pages. Badea noted that more than two threads did 
not perform well and hypothesized that future Web pages 
with richer CSS may benefit from more than two threads. 
For Mozilla pages, the end user’s perceived speedup was as 
high as 1.8 times, and for ZCS as high as 1.6 times. They at-
tribute the better speedups for the Mozilla page load tests to 
more complexity in layouts, as well as to the fact that ZCS is 
a more JavaScript-oriented benchmark suite.

Badea was asked if she believed there will be fewer im-
provements for such a parallel CSS rule matcher as Web 
pages have more and more JavaScript. She answered that 
more JavaScript doesn’t exclude more complex layouts. Can 

an early match result in a longer execution time than the 
single-threaded version? It’s possible, but the profiling data 
suggests this is a rare occurrence. What behaviors caused 
the worst speedups? Badea explained that Web pages with 
few ancestor elements did not trigger the parallel rule 
matcher, but suffered from added preprocessing.

■■ Opportunities and Challenges of Parallelizing Speech 
Recognition
Jike Chong, University of California, Berkeley; Gerald  Friedland, 
Adam Janin, Nelson Morgan, and Chris Oei, International 
 Computer Science Institute

Adam Janin said that the goal of their work is not for the 
sake of parallelism specifically, but, rather, to improve 
speech recognition accuracy, throughput, and latency. Janin 
then offered a scenario to drive his presentation; he had 
recorded the speech of a meeting with an iPhone on the 
table. The systems they developed should process the audio 
and allow browsing and retrieval of useful information 
such as querying who was speaking at a given time, finding 
audio segments by words spoken, and finding segments 
by speaker. Janin broke down the system and made a clear 
distinction between speech recognition that extracts words 
and diarization that identifies the speaker.

Then Janin built an argument for developing a parallel 
software implementation. Current technologies scale easily 
along any resource axis; still, state-of-the-art systems are 
100 times slower than real time to achieve the best results. 
Specialized hardware has gotten mixed improvements, so 
general parallel software may be the answer.

Perceptual models of the inner ear, Janin explained, are 
used to compute features of audio. The combination of fea-
tures usually improves results for noisy conditions, so cur-
rent systems typically select two to four cochlear representa-
tion variants. Janin asked, when we have more resources, 
why not add many more representations? He explained that 
the representations are filters fed to a neural net, which 
prompted a question: is the system similar to deep neural 
nets? Janin answered yes, he would call it deep learning, 
but with no unsupervised step. He then highlighted that the 
many streams and dense linear algebra required all have an 
obvious parallel structure.

Their experiments included both a 4-stream and a 
28-stream configuration. Janin indicated that the 4-stream 
setup improved accuracy by 13.3% on a Mandarin conver-
sational task, and the 28 streams improved accuracy by 
47% on a read digits tasks (e.g., phone numbers, zip codes). 
When asked if the system is commercially viable, Janin 
answered that the noisy number input audio is an artificial 
test, and current systems can do well for reading numbers 
over the phone under normal noise conditions. Another 
questioner asked whether there is a diminishing return for 
adding streams. Janin responded that they don’t know, but 
he certainly believes it. The data supports it, although he 
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said the brain is thought to be processing hundreds of mil-
lions of audio interpretations at once.

Janin then moved from their improvement of accuracy to 
the improvement of throughput. They pipelined the speech 
recognition system and improved the throughput of the in-
ference engine, which looks up the closest utterance from a 
language. Janin described how the machine-learning model 
generates a complex, static graph of state transitions to 
implement the inference. The online system, he explained, 
does a time-synchronous beam search over the graph, only 
keeping the best hypotheses. When asked how big the 
graph is, Janin answered that there are one million states, 
four million arcs, and thirty-two bytes for each node. They 
reported an 11-fold speedup overall—an 18-fold speedup 
for the compute-intensive transitions, and a 4-fold speedup 
for communication-intensive hypothesis merging.

The next segment of Janin’s talk covered how they improved 
latency and accuracy for online diarization. This might 
be useful, Janin explained, to identify who is speaking in 
real time during a distributed meeting. An attendee asked 
if training data is needed. Janin responded that none is 
needed for the speakers or even the language. Their strategy 
is to begin the offline diarization as soon as the meeting 
starts and hand off models for each speaker to the online 
system as they improve over the course of the meeting. 
Janin reported the error rate drops about 7% by paralleliz-
ing this implementation over eight cores.

In response to several requests to characterize the chal-
lenges of developing the parallel software, Janin replied that 
designing the parallel algorithm was more challenging than 
the implementation. New parallel tools could certainly help, 
especially any that might bring in new programmers. David 
Padua asked if there is a way to measure the progress in 
the field of speech recognition. Janin gave details of the US 
government’s annual challenge. Janin’s analysis was that the 
accuracy of systems entered has slowly improved to about 
50% word error rates, which he said is quite good for many 
applications, but that the major progress in the field has 
been to accomplish previously hard tasks much more easily.

june 14 ,  10 : 30  a .m .– 12 : 30  p.m .

Summarized by Chris Gregg (chg5w@virginia.edu)

■■ A Balanced Programming Model for Emerging 
 Heterogeneous Multicore Systems
Wei Liu, Brian Lewis, Xiaocheng Zhou, Hu Chen, Ying Gao, 
Shoumeng Yan, Sai Luo, and Bratin Saha, Intel Corporation

Brian Lewis talked about how computer architecture is be-
coming more heterogeneous and how to improve program-
ming models for such systems. More and more programma-
ble accelerators are being designed into computer systems, 
and this talk focused on them. GPUs are either discrete 
or integrated on-die with CPUs, in which case they share 
computational resources. Low-level languages that exist 

today (OpenCL, CUDA) focus on coarse-grained offloading 
of parallel computation, but do not fully take advantage of 
CPU capabilities. The authors want to improve programmer 
productivity and extend the range of applications that can 
be easily programmed.

David Padua asked, “Is the limitation for fine-grained pro-
cessing a factor of language, or of hardware?” Lewis an-
swered that both were relevant, to an extent. It is low-level, 
which does not lead to high-level breaking up of tasks. 
There was another question about why parallel languages 
weren’t yet meeting our needs; Lewis answered that it is 
mainly because they are still relatively low-level. They want 
a balanced programming model, to enable fine-grained 
computation using all cores, with better support for task 
and data parallelism, load balancing, and dynamic reconfig-
uring.

Lewis talked about the importance of shared virtual mem-
ory and the need for lightweight atomics and locks, which 
will allow better coordination between the CPU and GPU. 
The discrete Larrabee implementation has shared memory 
that supports release consistency and ownership rights, 
which allows the CPU and GPU to both work on the same 
data. There is an OS on both sides, leading to VM page pro-
tection, which helps with consistency. The shared memory 
CPU-integrated graphics has a device driver, and there isn’t 
an OS to handle page faults. It doesn’t detect updates using 
page faults, but it exploits shared physical memory, mean-
ing there is no data copying.

Nicholas Matsakis asked, “Is there a model for how the data 
should be shared?” Lewis said that the keyword “shared” 
marks shared data. Keywords, used for offloading func-
tions, are elaborated on in the paper. Timothy Roscoe asked, 
“Have you looked at what would happen if you ran multiple 
applications across this system?” Lewis answered that they 
did not look at that for this paper, but that is the end goal of 
the work.

■■ Collaborative Threads: Exposing and Leveraging Dynamic 
Thread State for Efficient Computation
Kaushik Ravichandran, Romain Cledat, and Santosh Pande, 
Georgia Institute of Technology

Romain Cledat started by discussing parallelism in general 
and how it can be improved. Parallelism today relies on 
threads, which is splitting up data or tasks. Current models 
include TBB and CnC, which leads to a natural parallelism. 
However, threads still use locks and barriers and transac-
tional memories. They share data through shared memory, 
but do not have knowledge about their “role” in the com-
putation nor the overall state of the computation. Current 
models break up a computation, and the distribution of 
work is done just in time. The state of the computation is 
not taken into consideration. The threads work indepen-
dently and do not have higher-level semantic knowledge. 
Performance of HPC problems has dependencies that are 
greater than simply how the work is split up.
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Cledat then discussed useful semantic state, determined by 
the programmer, to influence scheduling. Byn Choi asked, 
“Isn’t scheduling the threads the role of the task scheduler, 
and are you trying to make the threads do this in a distrib-
uted manner?” Cledat said they are trying to do more than 
scheduling and were trying to use the meta-information for 
more than just this problem.

Cledat turned the talk over to Kaushik Ravichandran, who 
discussed the system the authors created, specifically the 
semantic state taxonomy. Similar sub-problems are clustered 
together in a tree structure. The sub-problems are hierar-
chical, incremental, and approximate. This results in good 
lookup time, without having to build from scratch. With 
this information, they can re-use results, orient a computa-
tion, prioritize sub-problems, and select cores appropriately. 
Sean Halle asked, “Is the compiler doing this, or the app 
programmer?” Ravichandran answered that the programmer 
designates certain information and the run-time uses it.

Ravichandran provided an example of a sum of subsets, 
showing that a large of amount of redundancy can be ex-
ploited. The programmer can more aggressively parallelize 
this problem by specifying a similarity metric, which the 
system will use to make the best use of previously com-
puted values. For the second example, K-Means, objects can 
share data between localized points. The speedup comes 
from making fewer comparisons than the original algo-
rithm, sharing results from the closest neighbors.

■■ Structured Parallel Programming with Deterministic 
 Patterns
Michael D. McCool, Intel

McCool discussed how people parallelize applications and 
the structures they use. In particular, he described a total of 
16 different fundamental parallel programming patterns. A 
parallel pattern is a commonly occurring combination of task 
distribution and data access. Many programming models 
support a small number of patterns or low-level hardware 
mechanisms. However, a small number of patterns can 
support a wide range of applications, deterministically. A 
system that directly supports the deterministic patterns on 
a lot of different hardware architectures can lead to higher 
maintainability, and application-orientated patterns can lead 
to higher productivity.

Sean Halle asked, “Should patterns not have hardware 
details?” McCool answered, no, he would rather find more 
abstract patterns, and specifically functional programming 
patterns. There are structured programming patterns for 
serial computation, and we can add a number of parallel 
patterns to this list for a number of different, fundamental 
patterns.

Sean Halle asked, “Do you want your application talking to 
the runtime?” and McCool replied that yes, although you 
don’t want to over-constrain the runtime. You do, however, 
want communication between the two. He continued his 
talk by discussing partitioning, which is very important; 

you’re breaking an input collection into a collection of col-
lections. This is useful for divide-and-conquer algorithms. 
There is also the issue of boundary conditions. Another 
pattern is stenciling, which applies a function to all neigh-
borhoods of an array. There are also fused patterns that can 
be useful in specific conditions. Examples include: gather = 
map + random read; scatter = map + random write. Scatter 
is tricky, because you need to watch out for race conditions. 
It would be nice to find a deterministic scatter, and the best 
solution is “priority scatter,” which prioritizes the elements 
as they would have happened in a scalar scatter.

McCool finished with “the bottom line,” trying to create a 
taxonomy of good practices for parallel programming. Are 
these the right patterns? Is there a smaller list of primitive 
patterns? How important are nondeterministic patterns? 
Sarita Adve asked about determinism and isolation, and Mc-
Cool answered that the merge-scatter pattern came closest 
to matching. 

june 14 ,  12 : 30  p.m .–2 : 00  p.m .

Lunches on both days included tables labeled with ques-
tions for discussion. You can find the results of these 
discussions and some comments at http://www.usenix.org/
events/hotpar10/tech/techLunches.html. (I found the results 
fascinating and interesting in themselves.—The Editor)

june 14 ,  2 : 00  p.m .–4 : 00  p.m .

Summarized by James C. Jenista (jjenista@uci.edu)

■■ Separating Functional and Parallel Correctness using 
 Nondeterministic Sequential Specifications
Jacob Burnim, George Necula, and Koushik Sen, University of 
California, Berkeley

Jacob Burnim identified nondeterministic interleavings 
as a major difficulty when reasoning about the functional 
correctness of a parallel program. He proposed that a 
programmer-generated nondeterministic sequential artifact 
could decompose the effort into the questions of parallelism 
correctness and functional correctness. The key, Burnim 
explained, is that the programmer should annotate intended 
nondeterminism and then a system can check that the par-
allelization adds no more nondeterminism.

As an example, Burnim introduced a branch-and-bound 
code and asked the attendees to consider the sequentially 
expressed code as a parallel version by adding a few parallel 
constructs; is the parallelization correct? Burnim offered 
an interleaving that shows that the parallel answer may be 
different but correct. Burnim hypothesized that a specifica-
tion in between the sequential and parallel codes is needed 
to express the allowed nondeterminism and then provide a 
framework for proving the correctness of the parallelization.

Their artifact is a nondeterministic sequential (NDSEQ) 
expression of the code. Burnim introduced the nondeter-



; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 109

ministic for loop as an element of the NDSEQ which runs 
one iteration at a time but in any order. Burnim pointed 
out that there are still interleavings to avoid some prunings 
that the parallel version can express but the NDSEQ can-
not. As there is intended nondeterminism in the example, 
Burnim introduced the use of if(*) to instruct the NDSEQ to 
choose either branch. Burnim claimed the modified NDSEQ 
expressed the intended nondeterminism in the parallel ver-
sion, and that the NDSEQ could generate a given parallel 
interleaving. A question was raised about whether the paral-
lel algorithm was suboptimal, which Burnim conceded, but 
he stated that it is reasonable and apt for the illustration of 
their work.

Once the NDSEQ is provided, Burnim continued, the paral-
lel correctness and functional correctness can be proved 
separately. He interjected an argument that the correctness 
of the parallel version is undecidable and the correctness of 
the NDSEQ is decidable, offering another justification for 
the effort of creating the NDSEQ. Then Burnim demonstrat-
ed the correctness of the parallelism with a proof by reduc-
tion, consisting of the rearrangement of parallel interleav-
ings matched against the NDSEQ. Burnim was asked if the 
proof works for nested loops. He said that the correctness of 
the inner loop can be proved, then replaced with a sequen-
tial version to prove correctness of the outer loop.

Their future work will include automating the proof for real 
benchmarks. Burnim suggested that their approach might 
be applied to other model checking techniques. He also 
suggested that instead of a static system, their work might 
be integrated in a debugger to consider the correctness of a 
parallel trace, where a bug might be classified in relation to 
the parallelism or the functional correctness.

An attendee asked how to detect when the NDSEQ is incor-
rect. Burnim answered that there are two cases: when the 
NDSEQ is too strict, the situation is manageable, as the 
system could report parallel interleavings that the NDSEQ 
cannot express to aid NDSEQ improvement; when the 
NDSEQ is too weak, Burnim conceded that it becomes a 
difficult problem. Several people asked Burnim about the 
possibility of language solutions to avoid needing a correct-
ness checker. Burnim answered that when you get correct-
ness for free, language solutions are good, but some compu-
tations, such as types with a lot of guarantees, are hard to 
express without sufficient nondeterminism. 

■■ Synchronization via Scheduling: Managing Shared State in 
Video Games
Micah J Best, Shane Mottishaw, Craig Mustard, Mark Roth, and 
Alexandra Fedorova, Simon Fraser University, Canada; Andrew 
Brownsword, Electronic Arts Blackbox, Canada

Micah Best introduced their work as a fruitful technique 
for synchronizing threads via scheduling in the video game 
domain, a domain in which performance and responsive-
ness are high priorities. Though it was not the subject of 
his talk, Best covered the Cascade project, which expresses 
a video game engine as a dataflow task graph. Their work 

integrates with Cascade, he explained, and attempts to ease 
the burden of managing task-shared state off the developer 
through static analysis and new synchronization techniques 
at runtime.

Best described how static analysis of the Cascade mark-ups 
identifies constraints between tasks. The constraints are po-
tential conflicts, such as access to elements of a collection, 
and their work uses a runtime strategy to determine the 
actual constraints. Best stated that the scheduler uses task-
constraint profiles to synchronize access to shared data.

Best moved the discussion to a method of expressing 
constraints in binary. References and members, he said, are 
simply expressed. He continued with the expression for 
arrays which occur frequently in video game kernels and re-
quire some analysis of indices. The hardest cases are forms 
of indirection and will be addressed in their future work. 

The constraints identified by static analysis are passed 
through Bloom filters to produce a fixed-length bit string. 
The bit string is a constraint signature for the task; Best 
added that signatures are cheap to calculate and compare. 
A task may run when its signature has no conflict with 
running tasks, although signature comparisons may pro-
duce false positives but will never show a false negative. In 
response to a question about user control over the signa-
tures, Best responded that users may tune the construction 
parameters through Cascade.

Best characterized their scheduling algorithm as generation-
al. Tasks are batched by using logical-OR on their signa-
tures until no more tasks may be added without conflict. A 
batch forms a generation and is sent to a core while the next 
generation is batched.

They tested their work by adding Cascade mark-up to 
Cal3D, a library for animating character models where sepa-
rate animations may be blended and applied to the same 
model. When the application of multiple animations have 
a state conflict, the system synchronizes access; otherwise 
animations may be applied concurrently. Best then present-
ed the experimental setup;  a workload of four models with 
eight animations was executed on a two-processor Xeon 
totaling eight cores.

Their results were compared to a natural implementation 
as a baseline, which Best defined as one written by a non-
expert, competent programmer. The baseline implementa-
tion applies animations in a straightforward way without 
requiring synchronization. Best displayed an activity graph 
from Cascade that showed banding effects in core usage be-
cause there was not enough work while waiting for the next 
animation. With signatures and then a partitioning strategy 
they obtained better core utilization. Best highlighted an 
important result by presenting an expert-tuned version of 
the benchmark that had the highest utilization. He con-
cluded that they had pursued parallelism too aggressively; a 
method for finding the right amount of parallelism for given 
overheads is future work.
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Someone from Toshiba asked how they could encourage 
adoption. Best answered that adoption is always a concern 
for new parallel languages. One approach is to convince 
programmers the benefits of the new language are undeni-
able and always be sure the language is addressing the true 
problems facing the programmer. Nicholas Matsakis asked 
how much work Cal3D was to port. Best replied that the 
work was completed in a few weeks but noted that porting 
the Cube 3D code was much more difficult. He attributed 
this to the well-written source for Cal3D as opposed to 
messy source for Cube 3D and concluded that bad code is 
hard to parallelize.

■■ Get the Parallelism out of My Cloud
Karthikeyan Sankaralingam and Remzi H. Arpaci-Dusseau, 
University of Wisconsin—Madison

Karthikeyan Sankaralingam asked whether the current 
degree of focus on parallelism and multicore is out of 
proportion to the number of applications for the research. 
Implementing parallel software is complex, Sankaralingam 
said, and by asking if real developers or users even want it 
he stirred up a hornets’ nest.

Sankaralingam painted a future computing environment in 
which notebooks and smartphones offload computation to 
the cloud, and the average programmer can easily deploy 
and maintain software in the cloud. He argued that a small 
number of experts can implement the lower layers of the 
cloud for multicore architectures, while the average pro-
grammer or user device sticks with a few-core model.

Their work addressed three myths that Sankaralingam 
hypothesized are steering research away from improving 
the cloud environment and toward an overemphasis on 
multicore and parallelism. The first myth Sankaralingam 
covered was that hardware drives software. He argued that 
programmers historically spent significant software effort to 
achieve efficiency with hardware, but the major hardware 
problems are now solved. Now, he continued, programmers 
must be productive and demand high-level languages to ex-
press programs with as little code as possible, and therefore 
software is currently either decoupled from or even driving 
hardware.

Sankaralingam moved on to the second myth: multicore 
will be everywhere. He presented a graph describing the 
relation of performance to energy and explained that tech-
nology scales the curve, but by only so much, and ulti-
mately the number of cores on a handheld device is limited. 
Sankaralingam conjectured that the limit will be about 10 
cores. An attendee asked what he meant by a core; San-
karalingam said he meant a programmable processor. He 
concluded his discussion of this myth by pointing out that 
the mobile device may not need multicore, because from its 
perspective it gets free performance from the cloud without 
paying energy.

The third myth Sankaralingam identified was that every-
one should become a parallel programmer. Sankaralingam 
called parallel programming a great challenge that may even 

disrupt the curriculum and suggested it should be left to 
the experts. The average cloud application parallelizes over 
many clients in the cloud without being a parallel program, 
he said.

Sankaralingam summarized their work as an argument to 
rethink the role of parallelism and then opened for ques-
tions by taking off his jacket, revealing a bull’s-eye embla-
zoned t-shirt. Krste Asanović stated that productivity will 
always be important, and Sankaralingam agreed but used 
Jango as an example of programmers never even seeing the 
underlying SQL base. Someone from Qualcomm disagreed 
that cloud computing will become dominant, because dis-
tance to the tower doesn’t follow Moore’s Law, but devices 
are following it. Sankaralingam agreed that latency is a 
hard problem in cloud computing, but offered an anecdote. 
Sankaralingam had mounted a remote file system while 
traveling to the workshop, with virtually no impact on 
his environment; already, he said, the latencies are not so 
apparent to the end user. Sean Halle began by saying that 
Sankaralingam was very brave, and Sankaralingam replied 
that his advisor, Remzi Arpaci-Dusseau, is responsible for 
the things you disagree with. Halle pointed out that there 
are 200,000 iPhone applications and asked if Sankaralingam 
believed the iPhone successor will be single-core. San-
karalingam answered no, but continued by claiming that 
a mobile device will never have 100 cores for the average 
programmer to deal with. Sarita Adve asked who the PC 
members were who accepted this paper, as she wanted to 
talk with them later.

june 14 ,  5 : 00  p.m .– 8 : 00  p.m . :  poster session

Posters below summarized by Romain Cledat  
(romain@gatech.edu)

The poster session included all the talks in the program, as 
well as the papers reported here.

■■ A Principled Kernel Testbed for Hardware/Software 
 Co-Design Research
Alex Kaiser, Samuel Williams, Kamesh Madduri, Khaled 
Ibrahim, David Bailey, James Demmel, and Erich Strohmaier, 
Lawrence Berkeley National Laboratory

In this work, the authors developed high-level language 
implementations of key kernels in HPC. They then imple-
mented each kernel in C. The kernels cover the seven 
Dwarfs presented in the Berkeley vision. A tech report as 
well as the full code in C will be released soon. Note that all 
implementations are sequential. Contact: ADKaiser@lbl.gov.

■■ Contention-Aware Scheduling of Parallel Code for 
 Heterogeneous Systems
Chris Gregg, Jeff S. Brantley, and Kim Hazelwood, University of 
Virginia

This work looks at how best to choose where a program 
needs to run: on the GPU or on the CPU. The assumption 
is that most kernels will prefer the GPU but it depends on 
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whether the GPU is busy, the input size, the runtime of 
the baseline, the historical runtimes for the program, etc. 
 Contact: chg5w@virginia.edu.

■■ Capturing and Composing Parallel Patterns with Intel CnC
Ryan Newton, Frank Schlimbach, Mark Hampton, and Kathleen 
Knobe, Intel

This work extends the CnC model by introducing modules 
which encompass an entire graph as a single step. This al-
lows better reusability of code and modular building. CnC 
also introduces more schedulers for the tuning experts. The 
TBB scheduler is still the base scheduler, but there are now 
schedulers to specify task priorities, ordering constraints, 
and locality. Contact: ryan.r.newton@intel.com.

■■ General-Purpose vs. GPU: Comparison of Many-Cores on 
Irregular Workloads
George Caragea, Fuat Keceli, Alexandros Tzannes, and Uzi 
 Vishkin, University of Maryland, College Park

This work presents a PRAM-on-chip vision with a full 
vertical integration from the PRAM model to the hardware 
implementation. XMT is the PRAM abstraction and XMTC 
is the C-like language built on top of it. The PRAM model 
provides speedup in many cases, as well as ease of pro-
gramming. Furthermore, there is no need to reason about 
race conditions. This model has been tried in classes and 
people get it very quickly. Contact: {gcaragea,keceli,tzannes,
vishkin}@umd.edu.

■■ Leveraging Semantics Attached to Function Calls to Isolate 
Applications from Hardware
Sean Halle, INRIA Saclay and University of California, Santa 
Cruz; Albert Cohen, INRIA Saclay

The need for continuity with past systems in parallel pro-
gramming makes function calls very attractive (similar to 
OpenGL). Indeed, big changes are expensive and take time, 
and people feel comfortable with the way they were doing 
things before. After the code has been written to inte-
grate the parallel function calls, a specializer can produce 
different implementations for each call depending on the 
platform. The code is therefore isolated from the platform. 
Furthermore, this specialization step happens after the main 
development cycle, which means that there is more time to 
do it right. Another important aspect of the model is the use 
of program virtual time to easily detect scheduling errors. 
The final aspect of the model is the use of interfaces to im-
plement paradigms such as “divide work.” The application 
implements an interface “how to divide” which the runtime 
can call with the number of chunks to produce, depending 
on the target platform. Contact: seanhalle@yahoo.com.

■■ Enabling Legacy Applications on Heterogeneous Platforms
Michela Becchi, Srihari Cadambi, and Srimat Chakradhar, NEC 
Laboratories America

The goal of this work is to enable the re-targeting of legacy 
applications to heterogeneous systems. The system uses 
libraries to catch certain system calls, and each platform can 

have its own library which implements the calls differently 
depending on the platform. Contact: mbecchi@nec-labs.
com.

■■ OpenMP for Next Generation Heterogeneous Clusters
Jens Breitbart, Universität Kassel

This work is an extension of OpenMP. It works on shared 
memory systems and adds PGAS-like semantics for distrib-
uted memory systems. In that case, the runtime will seek to 
over-saturate the system to hide latencies. Annotations are 
done just as in OpenMP. Contact: jbreitbart@uni-kassel.de.

■■ Energy-Performance Trade-off Analysis of Parallel 
 Algorithms
Vijay Anand Korthikanti and Gul Agha, University of Illinois at 
Urbana-Champaign

Energy is becoming a big issue: as performance increases, 
energy increases quadratically. For embarrassingly paral-
lel applications, increasing the number of cores is good, as 
it results in better time and a quadratic decrease in en-
ergy. The problem, however, lies in the energy required to 
communicate. There is a sweet spot that optimally trades 
off communication energy and core energy. Two metrics 
are introduced: energy scalability under iso-performance 
and energy bounded scalability. The goal of this work is to 
determine the optimal number of cores based on the input 
size. Contact: vkortho2@illinois.edu.

■■ Prospector: A Dynamic Data-Dependence Profiler to Help 
Parallel Programming
Minjang Kim and Hyesoon Kim, Georgia Institute of Technology; 
Chi-Keung Luk, Intel Corporation

This work introduces Prospector, a profiling approach to 
dynamically determine data-dependencies. This greatly 
improves auto-parallelization. The main contribution of this 
work is the implementation of efficient compression of the 
profiling data. This produces much better results than Intel 
Parallel Advisor, for example. Contact: minjang@gatech.edu.

■■ Bridging the Parallelization Gap: Automating Parallelism 
Discovery and Planning
Saturnino Garcia, Donghwan Jeon, Chris Louie, Sravanthi Kota 
Venkata, and Michael Bedford Taylor, University of California, 
San Diego

This work introduces pyrprof, which is a profiler for paral-
lelism. It relies on the idea that potential parallelism is the 
ratio of work and the length of the critical path. Pyrprof 
ranks regions of code based on their parallelism potential 
and reports this information back to the user. The program-
mer can provide feedback to improve the accuracy of the 
system. Pyrprof will soon be publicly available. Contact: 
http://parallel.ucsd.edu/pyrprof.

■■ Checking Non-Interference in SPMD Programs
Stavros Tripakis and Christos Stergiou, University of California, 
Berkeley; Roberto Lublinerman, Pennsylvania State University

This work is like Lint for CUDA. It uses an SMT solver to 
determine if there are interferences in blocks separated by 
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__syncthreads. Contact: chster,stavros@eecs.berkeley.edu, 
rluble@psu.edu.

■■ Molatomium: Parallel Programming Model in Practice
Motohiro Takayama, Ryuji Sakai, Nobuhiro Kato, and Tomofumi 
Shimada, Toshiba Corporation

This framework allows easy parallel programming of plat-
forms such as TVs. Mol is a C-like language that borrows 
characteristics from Haskell (functional and lazy evalua-
tion). It describes the parallelism present. It is compiled to 
a bytecode. Atom describes the platform code (the target is 
mostly Cell). Contact: motohiro.takayama@toshiba.co.jp.

Posters below summarized by Rik Farrow (rik@usenix.org)

■■ DeNovo: Rethinking Hardware for Disciplined Parallelism
Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Bocchino, 
Sarita Adve, and Vikram Adve, University of Illinois at Urbana-
Champaign

The key concept here is that by creating disciplined soft-
ware, problems in designing hardware will become simpler. 
They have written Deterministic Parallel Java as an exem-
plar. DPJ allows partitioning the heap into named regions, 
and language constructs define data dependencies between 
regions. Cache coherency becomes easier as the relation-
ships between cache lines are spelled out in software, and 
message passing can be used for updating invalidated cache 
lines. Contact: denovo@cs.illinois.edu.

■■ Lock Prediction
Brandon Lucia, Joseph Devietti, Tom Bergan, Luis Ceze, and Dan 
Grossman, University of Washington

The authors wrote a trace generator that wrapped around 
the pthreads library to collect calls of lock acquisition func-
tions. They investigated the PARSEC benchmark suite of 
multithreaded programs and performed offline analyses of 
the traces to predict the next thread to acquire a given lock. 
Using a handful of models for lock transitions, they tested 
the accuracy of each model against the traces for differ-
ent programs. Each program had different lock acquisition 
characteristics, but past work has shown that accurate lock 
acquisition prediction does improve code performance. 
Their most frequent transition predictor model worked the 
best in general. Contact: http://sampa.cs.washington.edu.

■■ Resource Management in the Tessellation Manycore OS
Juan A. Colmenares, Sarah Bird, Henry Cook, Paul Pearce, 
and David Zhu, University of California, Berkeley; John Shalf 
and Steven Hofmeyr, Lawrence Berkeley National Laboratory; 
Krste Asanović and John Kubiatowicz, University of California, 
Berkeley

In Tessellation, applications and OS services are assigned to 
Cells, an abstraction that contains parallel software compo-
nents and supplies resource guarantees. A two-level sched-
uler separates global resource allocations from local sched-
uling and resource usage. A policy service determines how 
resources are allocated to each Cell, and application-specific 
schedulers, such as Lithe, are responsible for scheduling 

threads within each Cell. At the global level, gang-level 
scheduling ensures that components within a Cell are 
 available during scheduled runtime. Contact: yuzhu@eece 
.berkeley.edu.

■■ Processes and Resource Management in a Scalable 
 Many-core OS
Kevin Klues, Barret Rhoden, Andrew Waterman, David Zhu, 
and Eric Brewer, University of California, Berkeley

ROS provides a new process abstraction, the manycore 
process (MCP). With MCP, there is only one kernel thread 
per process, rather than per thread, and cores provisioned 
to an MCP are gang-scheduled. Traditional system calls are 
asynchronous and non-blocking, and processes are noti-
fied before a core or other resource is revoked. Resources 
 include anything that can be shared in a system: cores, 
RAM, cache, on-and off-chip memory bandwidth, access 
to I/O devices, etc. Contact: brho@eecs.berkeley.edu and 
yuzhu@eece.berkeley.edu.

june 15 ,  8 : 30  a .m .– 10 : 00  a .m .

Summarized by Chris Gregg (chg5w@virginia.edu)

■■ Dynamic Processors Demand Dynamic Operating Systems
Sankaralingam Panneerselvam and Michael M. Swift, University 
of Wisconsin—Madison

Sankaralingam Panneerselvam started by discussing the 
symmetric chip multiprocessor and why it does not support 
sequential workloads well. He then went on to show that 
the asymmetric chip multiprocessor satisfies diverse work-
loads well, but not as well as we would like. A dynamic 
multiprocessor, however, is flexible enough to adapt to the 
right configuration based on need. Dynamically variable 
processors lead to better performance with merging re-
sources and shifting power and also lead to better reliability, 
because of the ability to have redundant execution. 

Geoff Lowney asked why we need to reconfigure the OS. 
Panneerselvam said that an unexpected processor shut-
down can lead to thread execution stopping (in the case of 
a lock, for instance) or other stalls. He then described Linux 
HotPlug, which allows dynamic addition or removal of a 
processor. This allows for partitioning and virtualization, 
and for physical repair of the processor. It can be used for 
long-term reconfigurations, which assumes that the proces-
sor will never come back online, and all relevant systems 
are notified. 

Dan Grossman asked, “When you say ‘short-term recon-
figuration,’ what time frame are we talking about?” Panneer-
selvam answered, “Milliseconds.” Performance is good for 
virtualization, but too slow for rapid reconfiguration. Next, 
Panneerselvam described the “processor proxy,” which is a 
fill-in for an offline processor. The proxy does not actually 
execute threads, but ensures that everything else continues. 
Proxies are not a long-term solution, but if the reconfigura-
tion is long-term, it is better to move to a stable state. To do 
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this, a “deferred hotplug” happens, which means that a CPU 
that is currently proxied is removed. A “parallel hotplug” 
can also happen, which is the reconfiguration of multiple 
CPUs. These methods provide greatly improved perfor-
mance.

Timothy Roscoe asked, “Why is Linux the right OS to try 
this in? How much of this is about monolithic kernels?” and 
there was a long discussion about the role of the monolithic 
kernel. Panneer Selvam said that if we assume the virtual 
case, or a hypervisor, we want a number of things added to 
the OS in order to handle it. The OS wants to know about 
the changes, and we can implement those changes in Linux, 
in the monolithic kernel. Monolithic kernels aren’t going 
away soon. 

■■ Design Principles for End-to-End Multicore Schedulers
Simon Peter and Adrian Schüpbach, ETH Zurich; Paul Barham, 
Microsoft Research, Cambridge; Andrew Baumann, ETH Zurich; 
Rebecca Isaacs and Tim Harris, Microsoft Research, Cambridge; 
Timothy Roscoe, ETH Zurich

Simon Peter described the scheduler in Barrelfish, an 
experimental operating system. He started by asking why 
having two applications, one CPU-bound and one a barrier 
application, are a problem for OpenMP, in particular on a 
16-core system. The barrier application shows decreased 
performance as the number of barrier threads increases. 
This is because of the increasing cost to execute the barri-
ers. This situation works fine for a small number of threads, 
but eventually the performance drops significantly. Their 
approach mitigates this with gang scheduling and smart 
core allocation. Peter proposed an end-to-end approach, 
involving all components that can cut through classical OS 
abstractions, focusing on OS and runtime integration. 

Peter then described the five design principles Barrelfish 
implements. First, he discussed time-multiplexing cores that 
offer real-time quality of service for interactive applications. 
David Patterson said, “There is a possibility in the future 
that we cannot turn on and off cores at will, because of 
power issues. Is it still worthwhile to use time-multiplexing 
instead of space-multiplexing?” Peter answered that actu-
ally, this is a perfect case for time-multiplexing, because you 
might have to time-multiplex the cores that you do have 
access to. 

Peter then discussed scheduling at multiple timescales. He 
described the need for a small overhead when scheduling, 
because synchronized scheduling on each time-slice won’t 
scale. This is implemented in Barrelfish with a combination 
of techniques, including long-term placement of applica-
tions on cores, medium-term resource allocation, and 
short-term per-core dispatch. David Patterson then asked, 
“What is the problem this is trying to solve?” Peter replied 
that they are trying to decouple things so we don’t have to 
reschedule all the time. Barrelfish has phase-locked gang 
scheduling, which decouples schedule synchronization from 
dispatch. There may be a future re-sync necessary, but this 
happens at coarse-grained time scales.

Peter then outlined the “system knowledge base” in Bar-
relfish, which contains a rich representation of the hardware 
in the system. The OS and applications use this database. 
David Patterson asked, “Why did you go with a system 
knowledge base, which seems like a central bottleneck? 
Why didn’t you make it a runtime database?” Peter an-
swered that the hardware discovery information, boot-time 
micro-benchmarks, etc., go into the database. The data can 
be comprehensively queried, and the applications can use 
the database effectively. The centralized database was their 
first attempt, and it will be improved in the future.

june 15 ,  10 : 30  a .m .– 12 : 30  p.m .

Summarized by Rik Farrow (rik@usenix.org)

■■ OoOJava: An Out-of-Order Approach to Parallel 
 Programming
James C. Jenista, Yong hun Eom, and Brian Demsky, University 
of California, Irvine

Jim Jenista described how they had created a version of Java 
that can add parallelism to serial programs. In this work, 
they added a single language construct, the reorderable 
block, or rblock, that designates portions of code that can be 
executed out of order. Rblocks can be executed as soon as 
all dependencies are satisfied. 

The OoOJava compiler builds graphs between parent and 
child blocks and safely determines all data dependencies au-
tomatically. Jenista admitted that their implementation has 
several limitations, including a single exit point from each 
rblock. Dan Grossman immediately asked about exceptions, 
and Jenista answered that they use a subset of Java with no 
exceptions. He went on to describe a simple code example 
with two rblocks and explained the tree of dependencies 
that would be created, then walked, during execution. This 
graph shows that heap dependencies are properly handled, 
that all writes to a memory location occur in the same 
order. 

Someone asked about virtual functions, and Jenista re-
plied that they make a summary of all possible methods 
and combine them. Another person wondered if they had 
threads. Jenista answered that their subset has no threads, 
exceptions, global variables, or reflections. But, given a se-
rial program, OoOJava creates a parallel program out of it.

David McCool asked how many lines of code this required, 
and Jenista said several thousand. They convert Java into C 
code that is compiled, resulting in a decent speedup. The 
code is available at http://demsky.eecs.uci.edu/compiler.php 
and includes other research features as well. David Padua 
wondered what happens if the compiler fails, and Jenista 
answered that the compiler reports that to you and suggests 
changes.
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■■ User-Defined Distributions and Layouts in Chapel: 
 Philosophy and Framework
Bradford L. Chamberlain, Steven J. Deitz, David Iten, and 
 Sung-Eun Choi, Cray Inc.

Brad Chamberlain described Chapel, a new language that 
supports parallelism. Chapel is part of the DARPA-led High 
Productivity Computing Systems program. The language is 
designed to improve the programmability, robustness, and 
performance of parallel programs and targets both multi-
core and commodity cluster systems. You can download the 
source code from http://sourceforge.net/projects/chapel/.

Parallelism and data locality are driving concerns in Cha-
pel. Chapel includes notation for arranging data in arrays 
and how data parallel operators should be implemented. 
 McCool asked about their strategy for vector instructions, 
and Chamberlain responded that they haven’t created vector 
compilers, but generate C code. 

Chamberlain then explained domains and domain map-
pings. Domains takes lists of indices, and domain maps 
specify how the data will be accessed—for example, with 
a blocking factor or by tiling. An example mentioned a 
zippered domain map, and someone asked what “zippered” 
meant. Chamberlain explained that you would use zipper-
ing to suggest to the compiler which iterator to use when 
you have two domains with different layouts.

Chamberlain said that Chapel includes a user-defined 
domain-map framework and that at Cray they use this 
framework themselves. They don’t want to have an unfair 
advantage using a tool that is publicly funded. McCool 
asked if the compiler can convert nested multiple arrays, 
and Chamberlain answered, not currently, but there are 
default domain maps you can use to support this explicitly. 
Dan Grossman asked if using Chapel avoids static analysis, 
and Chamberlain said that you still have to do this yourself. 
Grossman said that you expose this, but Chapel does not 
understand it, and Chamberlain agreed. He said that you 
want to implement the right domain maps whenever possible. 

One goal of Chapel is not to impose arbitrary limitations. 
They do want to support separation of roles, with parallel 
experts writing domain maps and others using them. Cha-
pel does support both CPUs and GPUs. They have com-
pared Chapel to CUDA and gotten the same performance 
using a smaller code base. Sarita Adve asked about loads 
and stores, and Chamberlain responded that they support 
normal C indexing and that memory consistency is incred-
ibly relaxed. The programmer is responsible for arranging 
copying data between main memory and the GPU.

Grossman asked if the goal of Chapel is to become popular 
or develop new language structures, and Chamberlain an-
swered that either would be satisfactory. The main goal is to 
make users more productive. Grossman asked about status. 
Chamberlain said that performance is not good enough yet, 
but please try Chapel and provide feedback. You can find 
the slides for this presentation at http://www.usenix.org/
events/hotpar10/tech/slides/chamberlain.pdf.

■■ On the Limits of GPU Acceleration
Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi,  
Murat Efe Guney, and Aashay Shringarpure, Georgia Institute  
of Technology

Richard Vuduc started his talk with a quote: always com-
pare your results with scalar, unoptimized Cray code, as 
this will make your code look good. He then said that his 
paper was more of a survey, perhaps a story. The story 
begins with Scott Klasky posing a question: should I port 
my application to GPUs? A quick literature search turns up 
amazing speedups, 30–100 times faster than running on a 
modern CPU. What Vuduc and his fellow researchers found 
was something very different.

Vuduc pointed out that current GPUs are bandwidth-
bound, as they sit on the PCIe bus. A related issue has to do 
with memory access patterns. McCool asked if working-set 
size matters, and Vuduc said that has some influence. Even 
with the GPU on the same die as the CPU, there could still 
be bandwidth issues. Patterson asked if he was suggesting 
a second memory, and Vuduc pointed out that you might 
need to keep GPU memory even in the on-die version.

The bottom line is that with code properly tuned to run on 
a multicore system, like a Nehalem, the big exciting differ-
ences fade away. The authors tried three different scientific 
computations: (1) iterative sparse linear solvers, (2) sparse 
Cholesky factorization, and (3) the fast multipole method. 
Geoff Lowney asked how much work was involved in tun-
ing, and Vuduc said that someone spent perhaps one month 
of work, producing roughly twice the number of lines of 
code, in tuning one application. Lowney then wondered 
if the NVidia GPU code also represented tuned code and 
Vuduc said they were well tuned, with NVidia’s cooperation.

In the sparse matrix and fast multipole methods, the issue 
is clearly bandwidth related. Andrew Bauman asked if 
pipelining would help, and Vuduc said that a student is 
working on that. By tuning code, they found that a multiple 
core version on Nehalem was only 10% slower than a dual 
GPU version. In summary, one GPU is roughly equal to one 
CPU. If you look at power, CPUs are better. Someone asked 
why it was easier to gain so much speedup on GPUs? Vuduc 
answered that it isn’t really, that it took an equal amount of 
effort to tune and prepare code for either GPU or CPU.

june 15 ,  2 : 00  p.m .–4 : 00  p.m .

Summarized by Romain Cledat (romain@gatech.edu)

■■ Gossamer: A Lightweight Programming Framework for 
Multicore Machines
Joseph A. Roback and Gregory R. Andrews, The University of 
Arizona, Tucson

Gossamer is a framework for annotating existing applica-
tions to make them parallel. Roback first presented the 
15 annotations that compose Gossamer. The annotations 
are meant to encompass as large a domain as possible and 
support task spawning through constructs such as fork, 
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parallel, divide and replicate, memory synchronization 
with join, barrier, atomic, buffered, copy, ordered, shared, 
and the map-reduce paradigm. Roback then illustrated the 
annotations with a variety of well-known examples. In the 
n-queens problem, he showed how fork and join could be 
used. In bzip2, the presenter also demonstrated the “or-
dered” keyword, which allows a serialized join in the order 
of spawning. 

Roback briefly described the source-to-source translator 
that is used to compile down the annotations and generate 
bookkeeping artifacts. For example, the translator tries to 
limit the number of locks required to enforce “atomic” sec-
tions by finding the best middle ground between one global 
lock and one lock per variable.

Roback then described the runtime involved. The appli-
cation-level threads are referred to as “filaments” and are 
stackess and stateless, making them extremely lightweight. 
The filaments share the stack of the thread they are run-
ning on. A member of the audience asked if, once placed 
on a thread, a filament had to run till completion. Roback 
said yes, at this time, as the threads are stackless, but the 
authors are exploring medium-weight threads that could 
be interrupted. David Padua asked about the producer-con-
sumer paradigm and Roback said this was also future work. 
Recursive and task filaments are scheduled in a round-robin 
fashion: iterative filaments are scheduled in groups to maxi-
mize cache locality, and domain decomposition filaments 
are scheduled statically with one filament per processor.

Results were presented that demonstrated the very low 
overhead of the system. The super-linear speedup in the 
matrix-multiplication benchmark is due to the fact that 
when the benchmark runs on two sockets, it has a larger L2 
cache. Results also showed Gossamer comparing positively 
to Cilk and OpenMP in most situations.

In conclusion, Gossamer is a simple portable framework 
and the translator is available as a stage in the compilation 
process and can therefore be simply plugged into GCC or 
ICC.

David Patterson asked if they were thinking about trying 
out larger applications (like the Dwarfs and the implementa-
tion presented at this year’s HotPar). Roback answered that 
the goal was to try to fit as many applications as possible. 
David Padua asked why OpenMP was so much slower at 
times than Gossamer, since the approach seemed similar. 
It’s because the task implementation in OpenMP is cur-
rently not very good.

■■ Reflective Parallel Programming: Extensible and 
 High-Level Control of Runtime, Compiler, and  
Application Interaction
Nicholas D. Matsakis and Thomas R. Gross, ETH Zurich

Matsakis presented the concept of “reflective parallelism,” 
which he describes as a program’s ability to reason about its 
own schedule at runtime. Consider, for example, two tasks 
“A” and “B.” Questions that could be answered with reflec-

tive parallelism are: “Do A and B always run in parallel?” 
and “Must A finish before B starts?” The results from queries 
should return results that hold true for all executions and 
the program should be able to dynamically modify the 
schedule by adding scheduling constraints. Matsakis stated 
that reflective parallelism could be used for many things, 
from schedule visualization to testing frameworks to data-
race detection. In this paper he focused on data-race detec-
tion.

Matsakis then exposed the big problem with current 
threads: they construct their schedule through primi-
tives such as “start,” “join,” and “wait,” but the schedule 
is therefore never explicit until after the whole program 
has executed. Even after the program has run, it is nearly 
impossible to analyze the schedule and come up with asser-
tions that are always true. Reverse-engineering the program 
to build the schedule is also risky. 

Matsakis then introduced his answer to these problems: 
make the schedule a first-class entity in the program 
with the use of intervals where their use can express the 
schedule through declarative methods. The three concepts 
captured by the model are: (1) intervals that represent an 
asynchronous task or group of tasks; (2) points that repre-
sent the start and end of intervals (the point right before an 
interval and right after) on which “HappensBefore” relation-
ships can be specified; and (3) locks that can be held by 
intervals to specify a constraint without imposing an order. 
Alexandra Federova asked how this was different from TBB, 
and Matsakis responded that although a task-graph existed 
in TBB, it was more low-level with reference counts and was 
thus not a first-class entity.

Matsakis then briefly described the scheduling model where 
a “ready()” method expresses to the runtime that an interval 
is ready to run. “HappensBefore” relationships can be added 
dynamically, but they cannot be removed, which guarantees 
monotonicity and makes scheduling easier.

Finally, Matsakis defined how reflection can be used to 
specify “guards” on data objects. Guards can evaluate a con-
dition based on information gleaned through reflection to 
determine whether the object they are guarding can be ac-
cessed. Many of these conditions can be known at compile 
time, but even if they cannot, they can be quickly evaluated 
at runtime and warn the user of any data-race.

In summary, the intervals framework, available at http:// 
intervals.inf.ethz.ch, allows users to specify access condi-
tions using information reflected back about the schedule.

Geoff Lowney asked how the system handles the case where 
there is no guard on an object. Matsakis responded that the 
framework mandates a guard for all fields. Another per-
son asked how to know if this is the right way to proceed. 
Matsakis said it was a tough question to answer but that 
they had tried this model in undergrad classes with suc-
cess. Finally, a member of the audience asked how many 
of the checks were dynamic. Matsakis answered that many 
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checks could be done statically and, as is the case for most 
type systems, some small restructuring of the program can 
expose even more static checks.

■■ Task Superscalar: Using Processors as Functional Units
Yoav Etsion, Barcelona Supercomputing Center; Alex Ramirez, 
Barcelona Supercomputing Center and Universitat Politècnica de 
Catalunya; Rosa M. Badia, Barcelona Supercomputing Center; 
Eduard Ayguade, Jesus Labarta, and Mateo Valero, Barcelona 
Supercomputing Center and Universitat Politècnica de Catalunya

In this talk Etsion presented the idea of extending out-of-
order instruction pipelines to tasks to aid in exposing the 
operations that can execute in parallel and manage data 
synchronization. Indeed, for many years out-of-order pipe-
lines have been managing parallelism in a sequential stream 
of instructions. Although ILP does not scale well, due to the 
problems of building a large instruction window (difficulty 
with building a global clock, as well as the limited scalabil-
ity of dependency broadcasts) and the unpredictability of 
control-paths, Etsion believes that out-of-order task parallel-
ism may work better.

The presenter then moved on to explain the StarSS pro-
gramming model, where tasks are modeled as abstract 
instructions. A master thread spawns the various tasks 
encountered, which are dispatched to the worker proces-
sors. A runtime dynamically resolves dependencies and 
constructs a task-graph. It is important to note that the 
task-graph can get very complicated very quickly but that 
StarSS can build it and exploit it efficiently.

The need to do the task-decoding and scheduling in hard-
ware is due to the high latency of software (between 700ns 
and 2.5us). 

The model of execution is very similar to that of out-of-or-
der instruction execution: tasks are decoded and pushed to 
reservation stations. Data dependencies are taken care of in 
the same way as for instructions. Etsion showed results that 
demonstrated that parallelism could be uncovered in many 
scientific applications.

Etsion explained that task parallelism will scale more than 
ILP, for a variety of reasons. Firstly, broadcasts do not have 
to be used, since the latencies involved are much higher. 
Dependencies can therefore be dealt with using point-
to-point communication, which is much more scalable. 
Secondly, there is no need for a global clock. Thirdly, the 
multiplex reservation stations allow multiple tasks in the 
same data structure, making the representation much more 
compact. Tasks also are not speculative, although the au-
thors are looking at task predication.

As future work, the authors wish to exploit locality-based 
scheduling and also to gather tasks using a similar kernel 
and package them off to a GPU. They also wish to explore 
which instruction-level optimizations can be applied.

David Padua asked if tasks can interrupt each other. At this 
point they cannot, but nothing verifies that this is the case. 
Another audience member asked how energy-efficient the 
model is. It is difficult to predict, although it seems to be 
more efficient than having a dedicated big core decode and 
schedule the tasks.


