
38 ; LO G I N : VO L . 35, N O. 4

C A R L O S M A LT Z A H N ,
E S T E B A N M O L I N A - E S T O L A N O , A M A N D E E P
K H U R A N A , A L E X J . N E L S O N ,
S C O T T A . B R A N D T, A N D S A G E W E I L

Ceph as a scalable alternative
to the Hadoop Distributed File
System

Carlos Maltzahn is an associate adjunct professor at
the UC Santa Cruz Computer Science Department
and associate director of the UCSC/Los Alamos Insti-
tute for Scalable Scientific Data Management. His
current research interests include scalable file sys-
tem data and metadata management, storage QoS,
data management games, network intermediaries,
information retrieval, and cooperation dynamics.

carlosm@soe.ucsc.edu

Esteban Molina-Estolano is a PhD student at UC
Santa Cruz. His research interests include parallel
file and storage systems, and their modeling and
simulation. He received his BS from Harvey Mudd
College.

eestolan@cs.ucsc.edu

Amandeep Khurana completed his master’s in
computer science from UC Santa Cruz, specializing
in distributed systems. He has been dabbling with
Hadoop and HBase and is now at Amazon, helping
them scale their systems. Prior to this, he worked
with Cisco on building scalable data integration
frameworks.

akhurana@soe.ucsc.edu

Alex Nelson is a PhD student at UC Santa Cruz. His
research interests include secure, large-scale, and
long-term storage.

ajnelson@cs.ucsc.edu

Scott Brandt is a professor of computer science at
the University of California, Santa Cruz, and direc-
tor of the UCSC/Los Alamos Institute for Scalable
Scientific Data Management (ISSDM) and the UCSC
Systems Research Laboratory (SRL), in which Ceph
was developed. His current research includes high-
performance storage systems, real-time systems,
and distributed system performance management.

scott@cs.ucsc.edu

Sage Weil built Ceph as part of his PhD research
in storage systems at UC Santa Cruz. Prior to his
graduate work, Sage helped found New Dream Net-
work, the company behind Dreamhost Web hosting
(dreamhost.com), which now supports a small team
of Ceph developers.

sage@newdream.net

T H E H A D O O P D I S T R I B U T E D F I L E
System (HDFS) has a single metadata server
that sets a hard limit on its maximum size.
Ceph, a high-performance distributed file
system under development since 2005 and
now supported in Linux, bypasses the scal-
ing limits of HDFS. We describe Ceph and
its elements and provide instructions for
installing a demonstration system that can
be used with Hadoop.

Hadoop has become a hugely popular platform for
large-scale data analysis. This popularity poses ever
greater demands on the scalability and functional-
ity of Hadoop and has revealed an important ar-
chitectural limitation of its underlying file system:
HDFS provides only one name-node, which has
to store the entire file system namespace in main
memory. This puts a hard limit on the amount of
metadata, in particular the number of files, that
HDFS can store. The single name-node limitation
is well-recognized in the Hadoop user and devel-
oper community (see, for example, [8, 16]). Large
clusters frequently run out of capacity at the name
node to track new files even though there is plenty
of storage capacity at the data nodes. The single
name-node also creates a single point of failure and
a potential performance bottleneck for workloads
that require relatively large amounts of metadata
manipulations, such as opening and closing files.

Ceph [11] is an object-based parallel file system
with a number of features that make it an ideal
storage system candidate for Hadoop:

■■ Ceph’s scalable metadata server [14] can be dis-
tributed over hundreds of nodes while providing
consistent, reliable, high-performance metadata
service using dynamic subtree partitioning with
near-linear scalability.

■■ Each file can specify its own striping strategy
and object size. Flexible striping strategies and
object sizes are important tuning parameters for
Hadoop workloads [2, 6, 10].

■■ Data is stored on up to 10,000 nodes which
export a single, reliable object service [13] with a
flat namespace of object IDs, not unlike Ama-
zon’s Simple Storage Service (S3) [1]. Changes
in the storage cluster size cause automatic (and
fast) failure recovery and rebalancing of data
with no interruption of service and minimal data
movement, making Ceph suitable for very large
deployments.

■■ The state of the entire storage cluster, includ-

; LO G I N : AUGUST 201 0 CE PH A S A SC A L A B LE A LTE RN ATI V E TO H D FS 39

ing data placement, failed nodes, and recovery state, has a very compact
representation due to calculated data placement [12] as opposed to alloca-
tion tables, and is known in every part of Ceph. As in HDFS, Hadoop’s
scheduler can take advantage of this information to place mapping close to
where the data resides.

■■ Ceph is an open source project (ceph.newdream.net) written in C++ and C
that started as a PhD research project at UC Santa Cruz over four years ago
and has been under heavy development ever since. A Hadoop module for
integrating Ceph into Hadoop has been in development since release 0.12,
and Hadoop can also access Ceph via its POSIX I/O interface, using ioctl
calls for data location information.

■■ Since Ceph is designed to serve as a general-purpose file system (e.g., it
provides a Linux kernel client so Ceph file systems can be mounted), if it
supported Hadoop workloads well, it could also be a general solution to
other storage needs.

In this article we describe the Ceph file system architecture, how to install
Ceph on a 10-node cluster, and how to use Ceph with Hadoop.

Ceph

Ceph was designed to fulfill the following goals specified by three national
laboratories (LLNL, LANL, and Sandia) back in 2005:

■■ Petabytes of data on one to thousands of hard drives
■■ TB/sec aggregate throughput on one to thousands of hard drives pumping

out data as fast as they can
■■ Billions of files organized in one to thousands of files per directory
■■ File sizes that range from bytes to terabytes
■■ Metadata access times in µsecs
■■ High-performance direct access from thousands of clients to

■■ different files in different directories
■■ different files in the same directory
■■ the same file

■■ Mid-performance local data access
■■ Wide-area general-purpose access

The challenges of such a file system are that it needs to be able to deal with
huge files and directories, coordinate the activity of thousands of disks,
provide parallel access to metadata on a massive scale, handle both scien-
tific and general-purpose workloads, authenticate and encrypt at scale, and
grow or shrink dynamically because of frequent device decommissioning,
device failures, and cluster expansions. You can’t just shut down the system
because of a disk failure or shortage of space.

Ceph is an object-based parallel file system whose design is based on two key
ideas. The first key idea is object-based storage, which splits the traditional
file system architecture into a client component and a storage component.
The storage component manages disk scheduling and layout locally, reliev-
ing clients and servers from low-level per-disk details and increasing scal-
ability. This design allows clients to communicate with storage nodes via a
high-level interface and manage data in terms of objects, which are chunks
of data much larger than 512-byte blocks. The T10 standard of the SCSI Ob-
ject Storage Device (OSD) command set [5] is an example of an object inter-
face specification. Ceph uses and significantly extends the concept of OSDs.
For all practical purposes, think of a Ceph OSD as a process that runs on a
cluster node and uses a local file system to store data objects.

The second key idea in the Ceph design is the separation of data and

40 ; LO G I N : VO L . 35, N O. 4

metadata. Management of data differs fundamentally from management of
metadata: file data storage is trivially parallelizable and is limited primar-
ily by the network infrastructure. Metadata management is much more
complex, because hierarchical directory structures impose interdependen-
cies (e.g., POSIX access permissions depend on parent directories) and the
metadata server must maintain file system consistency. Metadata servers
have to withstand heavy workloads: 30–80% of all file system operations
involve metadata, so there are lots of transactions on lots of small metadata
items following a variety of usage patterns. Good metadata performance is
therefore critical to overall system performance. Popular files and directories
are common, and concurrent access can overwhelm many schemes.

The three unique aspects of Ceph’s design are:

■■ distributed metadata management in a separate metadata server (MDS)
cluster that uses dynamic subtree partitioning to avoid metadata access hot
spots and that is robust against non-byzantine failures;

■■ calculated pseudo-random data placement that allows for very compact
state that can be shared easily throughout the system (CRUSH); and

■■ distributed object storage using a cluster of intelligent OSDs which forms a
reliable object store that can act autonomously and intelligently (RADOS)
(see Figure 1).

F I G U R E 1 : A R C H I T E C T U R E . C E P H C O N S I S T S O F F O U R S U B S Y S T E M S :
(1) F I L E S Y S T E M C L I E N T S , (2) D A T A P L A C E M E N T U S I N G A F O R M O F
C O N S I S T E N T H A S H I N G (C O N T R O L L E D R E P L I C A T I O N U N D E R S C A L A B L E
H A S H I N G , O R C R U S H) , (3) A C L U S T E R O F M E T A D A T A S E R V E R S (M D S) ,
A N D (4) A R E L I A B L E A U T O N O M I C , D I S T R I B U T E D O B J E C T S T O R E
(R A D O S) , W H I C H I N C L U D E S T H E M O N I T O R S E R V I C E A N D O B J E C T
S T O R A G E D E V I C E S (O S D S) .

The high-level interaction of these components is shown in Figure 2.

; LO G I N : AUGUST 201 0 CE PH A S A SC A L A B LE A LTE RN ATI V E TO H D FS 41

F I G U R E 2 : C E P H C O M P O N E N T I N T E R A C T I O N S

CLIENT

A user or an application interacts with Ceph through the client component.
The client exposes a POSIX file system interface. The interface also supports
a subset of POSIX I/O extensions for high-performance computing, includ-
ing the O_LAZY flag for the POSIX open command, which allows perfor-
mance-conscious applications to manage their own consistency [15]. Ceph
has a user-level client as well as a kernel client. The user-level client is either
linked directly to the application or used via FUSE [9]. The kernel client is
now available in the mainline Linux kernel (since 2.6.34) and allows the
Ceph file system to be mounted.

For a simple example of how a client interacts with the rest of the Ceph sys-
tem, consider a client opening a file /foo/bar for reading: the client sends an
“open for read” message to the MDS. The MDS reads directory /foo from the
appropriate OSDs (unless the directory is already cached in memory) and
returns the capability for reading “/foo/bar” to the client. The client then cal-
culates the name(s) and location(s) of the data object(s) for the file and reads
the data from the corresponding OSD(s). Finally, the client closes the file by
relinquishing the capability to the MDS. Remember that all these messages
between these different components of Ceph are invisible to the application:
the application simply issues POSIX open, read, and close commands.

The client is the only place in Ceph where metadata meets data: the capabil-
ity returned by the MDS contains the inode number, the replication factor,
and information about the striping strategy of a file, which can be file-specific
and is set at file creation time. The striping strategy, the inode number, and
an offset allow the client to derive the object identifier. A simple hash func-
tion maps the object identifier (OID) to a placement group, a group of OSDs
that stores an object and all its replicas. There are a limited number of place-
ment groups to create an upper bound on the number of OSDs that store
replicas of objects stored on any given OSD. The higher that number, the
higher the likelihood that a failure of multiple nodes will lead to data loss.
If, for example, each OSD has replica relations to every other OSD, the fail-
ure of just three nodes in the entire cluster can wipe out data that is stored
on all three replicas. Placement groups are mapped to OSDs by CRUSH,
a consistent hashing function that takes as parameters (1) the placement
group ID, (2) the replication factor, (3) the current cluster map (see section
on RADOS, below), and (4) placement rules (see section on CRUSH, below).
CRUSH then returns an ordered list of OSD IDs, one for each replica. The
client picks the first OSD (the “primary”) on the list as a location of the object.

Client

Monitor

OSDMDS

Meta
da

ta
op

s,

ca
pa

bil
itie

s

Startup,
authentication

tickets,
updating

cluster maps

Data I/O

Metadata I/O

Heartbeats,

updating

cluster maps

Heartbeats,
updating

cluster maps

RADOS

42 ; LO G I N : VO L . 35, N O. 4

METADATA SERVICE (MDS)

Ceph provides a cluster of metadata servers which continually load-balances
itself using dynamic subtree partitioning [14]. The responsibility for man-
aging the namespace hierarchy is adaptively and intelligently distributed
among tens or even hundreds of metadata servers. The key to the MDS
cluster’s adaptability is that Ceph metadata items are very small and can be
moved around quickly. This would be impossible if Ceph were to use the ap-
proach of many file systems, in which file byte streams are mapped to disk
blocks using allocation tables.

Each directory is stored as an object. Inodes are embedded in directories and
stored with the corresponding directory entry (file name). This organization
optimizes the common access pattern of listing a directory and retrieving
metadata for each file. Embedded inodes complicate the management of
hard links, but it turns out that hard links are rare and exhibit useful local-
ity properties (most hard links are referring to entries within the same or
parallel directory).

To enable failure recovery, the MDS journals metadata updates to OSDs.
The journals are striped across large objects, which leads to efficient,
sequential writes. All in-memory metadata that is updated and journaled
but not written as an updated directory object is marked dirty and pinned
to main memory until the corresponding entries in the journal must be
trimmed from the tail of the journal. Journals are allowed to grow very large
(hundreds of megabytes). By the time updates need to be trimmed, many
metadata updates have been invalidated by subsequent updates and can be
consolidated into a small number of directory updates. With this approach
the MDS acts as an intelligent metadata cache that turns random updates of
small metadata items into efficient data I/O.

The file system’s namespace is partitioned across the cluster of MDS nodes
along directory subtrees, as shown in Figure 3. This dynamic subtree parti-
tioning ensures that the distribution of subtrees is as coarse as possible to
preserve locality (which is often aligned along subtrees) and that it is con-
tinually adapted to keep the MDS workload-balanced. Subtrees are migrated
between MDSes as workload changes. To alleviate hot spots, heavily read
directories are replicated on multiple MDSes so that the number of clients
knowing about a particular replica can be bounded. Large or heavily written
directories are fragmented for load distribution and storage. Rebalancing of
the MDS at even extreme workload changes is usually accomplished within
a few seconds. Clients are notified of relevant partition updates whenever
they communicate with the MDS.

F I G U R E 3 : D Y N A M I C S U B T R E E P A R T I T I O N I N G

RELIABLE AUTONOMIC DISTRIBUTED OBJECT STORAGE (RADOS)

Data in Ceph is stored in a distributed object store that can scale up from
tens to hundreds of thousands of object storage devices (OSDs). RADOS can

Root

MDS 0 MDS 4MDS 1 MDS 2 MDS 3

Busy directory hashed across many MDS’s

; LO G I N : AUGUST 201 0 CE PH A S A SC A L A B LE A LTE RN ATI V E TO H D FS 43

also be used as a stand-alone system. In fact, the Ceph distribution includes
a simple gateway, a fastcgi daemon, that implements Amazon’s S3 API [1] for
RADOS.

Initiators—in Ceph’s case, clients and the MDS—see the object storage
cluster as a single logical object store with a flat namespace, called RADOS.
RADOS achieves its scalability by significantly expanding the T10 SCSI
OSD concept: while T10 OSDs only respond to read and write, Ceph OSDs
actively collaborate with peers for failure detection, data replication, and
recovery.

To direct requests, initiators use a cluster map which they receive from
RADOS. The very compact cluster map contains information about partici-
pating OSDs, their status, and the CRUSH mapping function (see CRUSH
section, below). The master copy of the cluster map is managed by a dis-
tributed monitor service which consists of a set of monitors that maintain
consistency using the Paxos algorithm [7]. When an OSD alerts the monitor
service of a new failure or cluster expansion, the monitor replies with an
updated version of the cluster map, which is then lazily propagated through-
out the cluster. The total size of the cluster map is in the range of megabytes
(depending on the size of the cluster). Propagation overhead is reduced by
only communicating deltas between cluster map versions and combining
them with existing inter-OSD messages.

Unlike other parallel file systems, replication is managed by OSDs instead of
clients, which shifts replication bandwidth overhead to the OSD cluster, sim-
plifies the client protocol, and provides fully consistent semantics in mixed
read/write workloads. RADOS manages the replication of data using a vari-
ant of primary-copy replication. As mentioned in the Client section, above,
replicas are stored in placement groups. Each placement group includes a
primary OSD which serializes all requests to the placement group. In case of
writes, the primary forwards the request to the other OSDs of the placement
group. The primary applies the write locally after the other replicas have ap-
plied theirs. Only then does the client receive an acknowledgment from the
primary.

Writes are applied in two phases, as shown in Figure 4. This two-phase ap-
proach separates writing for the purpose of sharing with other clients from
writing for the purpose of durability and makes sharing data very fast. The
client receives an ack from the primary after the data has been replicated in
memory on all of the replicas. At this point, the client still has the data in its
buffer cache. Once the data is committed to the disk on all replicas, the pri-
mary sends a commit to the client, confirming that the data is now durable.
The client may then delete the data from its buffer cache.

F I G U R E 4 : W R I T E S E M A N T I C S

By default, OSDs use Btrfs [3] as their local file system (but ext3 works too).
Data is written asynchronously using copy-on-write, so that unsuccess-
ful write operations can be fully rolled back. Each OSD maintains a log of

44 ; LO G I N : VO L . 35, N O. 4

object versions for each placement group in which it participates. If one OSD
fails, the remaining OSDs can quickly identify stale or missing objects by
comparing these logs; OSDs which intermittently fail can quickly recover.

An OSD monitors the state of other OSDs in the same placement groups
using heartbeat messages, which are usually piggybacked on replication traf-
fic. OSDs that discover an unresponsive OSD alert the monitor service and
receive a new cluster map that marks the unresponsive OSD as down. Other
OSDs temporarily take over any primary roles the unresponsive OSD might
have had. If within a configured time the OSD does not come back up, the
monitor service issues another cluster map that marks it as out, some other
OSD is elected to be the new primary, and the re-establishment of the full
complement of replicas begins.

In summary, Ceph’s failure detection and recovery are fully distributed and
the monitor service is only used to update the master copy of the cluster
map. The monitor service does not broadcast these updates to the cluster.
Instead, the cluster map updates are communicated by OSDs using epi-
demic-style propagation that has bounded overhead. This procedure is used
to respond to all cluster map updates, whether due to OSD failure, cluster
contraction, or expansion. OSDs always collaborate to realize the data dis-
tribution specified in the latest cluster map while preserving consistency of
read/write access.

DATA DISTRIBUTION WITH CRUSH

The small size of metadata items in the MDS and the compactness of cluster
maps in RADOS are enabled by CRUSH (Controlled Replication Under Scal-
able Hashing) [12]. Ceph uses this hash function to calculate the placement
of data instead of using allocation tables, which can grow very large and
unwieldy. CRUSH is part of the cluster map and behaves like a consistent
hashing function in that failure, removal, and addition of nodes result in
near-minimal object migration to re-establish near-uniform distribution.

As mentioned in the Client section, CRUSH maps a placement group ID to
an ordered list of OSDs, using a hierarchically structured cluster map and
placement rules as additional input. The length of the list of OSDs depends
on the replication factor. The first available OSD in the list is the primary.
Any list output by CRUSH meets the constraints specified by placement
rules. These rules are defined over cluster maps which an administrator can
hierarchically structure according to, say, failure domains such as racks or
shelves (since they often share the same electrical circuit or power supply).
Thus, placement rules can prevent two replicas from being placed in the
same failure domain. This awareness of failure domains during data place-
ment is critically important for the overall data safety of very large storage
systems where correlated failures are common.

Installing and Configuring Ceph

A Ceph installation requires at least one monitor, one OSD, and one meta-
data server. These may all be on the same node, although the use of addi-
tional nodes allows for greater performance, robustness, and capacity. Here
we give a configuration walk-through for a multi-node Ceph installation.
For a single-node installation, adapt this example to start up one of each
daemon, all on the same node.

Our hypothetical cluster has 10 nodes, with hostnames node0 through
node9. Each node has a raw, unused partition at /dev/sdb1 and another at
/dev/sdb2. We will configure the nodes as follows:

; LO G I N : AUGUST 201 0 CE PH A S A SC A L A B LE A LTE RN ATI V E TO H D FS 45

■■ Three monitors, on nodes 0–2
■■ Three MDSes, on nodes 0–2
■■ Eight OSDs, on nodes 2–9

Less hardware could be used for a multi-node cluster. There should always
be an odd number of monitors. For robustness, two MDSes (active and
standby) are sufficient. For data replication, two OSDs would be sufficient.

We use a file system setup user named setupuser, whose public key grants
access to setupuser on all nodes and root accounts on the storage nodes,
due to the need to format partitions. This key should be password-locked
and used with SSH-Agent or an equivalent session manager—it will only be
used to set up and tear down the Ceph cluster. However, if you use the same
account and key for later Hadoop setup, this key cannot have a password
due to Hadoop’s passwordless SSH requirement.

These instructions are sufficient to set up and run a Ceph cluster. If you
want further documentation, see the Ceph wiki (http://ceph.newdream.net/
wiki/), and src/sample.ceph.conf within the downloaded Ceph server code.
Alternate packaging is available for Debian and Fedora Core from Ceph’s
wiki; also for Fedora, there is a ceph.spec file in the source. This tutorial
works with Ceph 0.20.1 from source and Linux kernel 2.6.34.

INSTALLING CEPH DAEMONS

First, we install the prerequisite packages on each node. For Fedora Core 12
or Ubuntu 9.10, run these commands:

#Ubuntu 9.10
apt-get install autoconf automake libtool libboost-dev libedit-dev libssl-dev

#Fedora Core 12
yum install rpm-build fuse-devel libtool libtool-ltdl-devel boost-devel
libedit-devel openssl-devel gcc-c++ btrfs-progs

Second, we configure and build the source. For simplicity, we will assume
that you are building the source in a shared NFS directory, visible on all
nodes. We will run the daemons from <ceph directory>/src/ in the build tree
without installation. We will also create the ceph.conf configuration file in
the source tree.

To avoid relying on NFS, you can make install Ceph on each node, or
install Ceph using the Debian packages (see http://ceph.newdream.net/wiki/
Debian). In this case, you will also need to deploy ceph.conf to /etc/ceph/
ceph.conf on each node, instead of keeping it in the source tree.

cd <ceph directory>
CXXFLAGS=”-g” ./configure
make

The cluster initialization script detects when these are run out of a local di-
rectory instead of being fully installed; thus there is no need to set the Ceph
executables’ directory in a configuration file. If you do want to have a local
installation on each node, run sudo make install after make. This places
the Ceph binaries into /usr/local/bin and /usr/local/sbin as necessary.

CONFIGURING

Ceph’s configuration is stored in a single file, ceph.conf, which is identical
across all nodes. There is a section in the configuration file for each daemon
and a common section for each type of daemon. For instance, configuration

46 ; LO G I N : VO L . 35, N O. 4

parameters common across all monitors are placed in the [mon] section, and
per-monitor settings are placed in [mon0], [mon1], and so on.

For logging and other local data purposes, create a local directory on all
nodes, /data, readable and writeable as setupuser. Then create src /ceph.
conf as follows.

[global]
 user = setupuser
 ; where the mdses and osds keep their secret encryption keys
 keyring = /data/keyring.$name

; monitors
[mon]
 ;Directory for monitor files
 mon data = /data/mon$id

[mon0]
 host = node0
 mon addr = 192.168.0.100:6789
[mon1]
 host = node1
 mon addr = 192.168.0.101:6789
[mon2]
 host = node2
 mon addr = 192.168.0.102:6789

; metadata servers
[mds]

[mds0]
 host = node0
[mds1]
 host = node1
[mds2]
 host = node2

; OSDs
[osd]
 ; osd data is where the btrfs volume will be mounted;
 ; it will be created if absent
 osd data = /data/osd$id
 ; osd journal is the regular file or device to be used for journaling
 osd journal = /dev/sdb2
 ; The ‘btrfs devs’ partition will be formatted as btrfs.
 btrfs devs = /dev/sdb1
 host = node$id

[osd2]
[osd3]
[osd4]
[. . .}
[osd9]

Observe that by setting host = node$ id, and by instantiating OSDs 2
through 9 (skipping 0 and 1), we can exploit the sequential hostnames and
avoid explicitly setting the hostname for every OSD.

OSD journaling is more efficiently done on a raw partition than on a regular
file. If you use a raw partition, setupuser should be a member of the disk
group on the OSDs, so that it has write access to the device.

Next, create and start the file system as follows. The -allhosts flag makes

; LO G I N : AUGUST 201 0 CE PH A S A SC A L A B LE A LTE RN ATI V E TO H D FS 47

each command work on all the nodes specified in ceph.conf, via SSH; there-
fore, you should have passwordless root SSH configured for each OSD. The
root account’s authorized_keys on each OSD should have the public key of
setupuser. Once the public key is distributed, run the following commands:

./mkcephfs -c ceph.conf --allhosts --mkbtrfs

./init-ceph -c ceph.conf --allhosts start

-mkbtrfs formats the btrfs devs to Btrfs; if you wish to use another file sys-
tem or regular directory instead, ensure that the resulting or underlying file
system has extended attributes enabled (user_xattr for ext3).

Should you need to stop (./init-ceph -c ceph.conf -allhosts stop) and restart
the Ceph services, the log directories from prior server sessions may cause a
hanging failure on mount. Clearing them prevents this issue.

Mounting requires kernel support. Ceph support is in the Linux kernel as
of version 2.6.34; for earlier kernel versions, see http://ceph.newdream.net/
wiki/Building_kernel_client for instructions on building the Ceph kernel
module. Mount as follows, using the IP address of one of the monitors:

 mount -t ceph 192.168.0.100:/ /mnt/ceph

At this point, Ceph is usable like any other part of your local file system.

Using Hadoop with Ceph

There are two ways to use Ceph as the file system for Hadoop: (1) mounting
Ceph as in the end of the previous section and using it as a local file system
in Hadoop (file:///mnt/ceph); (2) patching the Hadoop Core with the patch avail-
able in the HADOOP-6253 JIRA [4]. This uses the user-level client of Ceph.

When starting up Hadoop, do not use bin/start-all.sh, as this will launch
HDFS. Start up only the daemons you need (e.g., bin/start-mapred.sh for
MapReduce).

RUNNING HADOOP ON CEPH THROUGH THE KERNEL INTERFACE

You can run Hadoop on Ceph via POSIX using Ceph’s kernel interface.
Using Hadoop on top of Ceph instead of HDFS requires two configuration
tweaks in conf/core-site.xml (conf/hadoop-site.xml in 0.20.2):

<configuration>

 <property>
 <!--
 Note that in release 0.20.2 this name is fs.default.name;
 afterwards this is fs.defaultFS.
 ->
 <name>fs.defaultFS</name>
 <value>file:///mnt/ceph</value>
 </property>
</configuration>

<property>
 <name>hadoop.sharedtmp.dir</name>
 <value>/mnt/ceph/hadoop-tmp/hadoop-${user.name}</value>
</property>

Using Ceph through the above option will use Hadoop’s Raw File System
interface to communicate with Ceph as a local file system. There are optimi-
zations that can be added to this interface in order to better leverage Ceph’s
performance. For example, locality information is not exposed to the Raw

48 ; LO G I N : VO L . 35, N O. 4

File System interface; therefore Hadoop will not be able to schedule tasks
close to the physical location of the data. These optimizations are being put
into the HADOOP-6779 JIRA [17].

RUNNING HADOOP ON CEPH VIA JNI CODE

There is a second way to run Hadoop on Ceph which does not require the
POSIX kernel interface—and hence does not require updating your cluster’s
kernels. You can instead use JNI code to connect Hadoop to Ceph in user-
space. This feature is not yet in a Hadoop release; to use it, check out the Ha-
doop development trunk, and apply the patch from the HADOOP-6253 JIRA
[4]. (See http://ceph.newdream.net/wiki/Hadoop_File system for more details.)
Building Hadoop from the trunk source is outside the scope of this article.

Then add the following to conf/core-site.xml:

<property>
 <name>fs.defaultFS</name>
 <!--ip address of the mds here-->
 <value>ceph://<MDS_IPAddress:port></value>
</property>

<property>
 <name>fs.ceph.monAddr</name>
 <value><monitor_server:port></value>
 <description>The location of the Ceph monitor to connect to. This
 should be an IP address, not a domain-based web address.</description>
</property>

<property>
 <name>fs.ceph.libDir</name>
 <value>/usr/local/lib</value>
 <description>The folder holding libceph and libhadoopceph</description>
</property>

After adding these configurations, Hadoop is ready to use with Ceph as its
data store.

Summary

Since the Ceph kernel client was pulled into Linux kernel 2.6.34, interest in
Ceph has greatly increased. Ceph is currently the only open source (LGPL
licensed) parallel file system that offers a distributed metadata service that is
linearly scalable to at least 128 metadata service nodes, supports the POSIX
I/O API and semantics, and is able to expand and contract with low over-
head without interrupting service.

The last point allows Ceph to be deployed in virtual environments such
as Amazon’s EC2 cloud service, where frequent and significant cluster size
changes are the norm. Overall Ceph addresses a number of shortcomings
of HDFS, i.e., HDFS’s limited name-node scalability, its heartbeat overhead,
and its highly specialized file access semantics.

As we write this, Ceph is still experimental and not yet ready for production
environments. Sage Weil, Yehuda Sadeh, and Gregory Farnum are working
full-time on making Ceph production-ready, with new releases coming out
every 2 to 4 weeks. We hope this article will encourage people to participate
in this effort by trying out Ceph with workloads they care about and report-
ing any bugs, performance problems, or bug/performance fixes.

; LO G I N : AUGUST 201 0 CE PH A S A SC A L A B LE A LTE RN ATI V E TO H D FS 49

REFERENCES

[1] Amazon, Simple Storage Service—Developer Guide (API Version
2006-03-01): docs.amazonwebservices.com/AmazonS3/2006-03-01/.

[2] Rajagopal Ananthanarayanan, Karan Gupta, Prashant Pandey, Himabin-
du Pucha, Prasenjit Sarkar, Mansi Shah, and Renu Tewari, “Cloud Analytics:
Do We Really Need to Reinvent the Storage Stack?” USENIX HotCloud ’09,
San Diego, CA, June 15, 2009.

[3] Valerie Aurora, “A Short History of Btrfs,” LWN.net, July 22, 2009:
http://lwn.net/Articles/342892/.

[4] Gregory Farnum, “Add a Ceph File System Interface,” ASF JIRA, May
2010: https://issues.apache.org/jira/browse/HADOOP-6253.

[5] International Committee for Information Technology Standards, SCSI
Object-Based Storage Device Commands - 3 (OSD-3), project proposal for a
new INCITS Standard T10/08-331r1, International Committee for Informa-
tion Technology Standards, September 11, 2008.

[6] Hadoop Project, Hadoop Cluster Setup: hadoop.apache.org/core/docs/
current/cluster_setup.html.

[7] Leslie Lamport, “The Part-time Parliament,” ACM Transactions on Com-
puter Systems, vol. 16, no. 2, 1998, pp. 133–169.

[8] Konstantin V. Shvachko, “HDFS Scalability: The Limits to Growth,”
;login:, vol. 35, no. 2, 2010.

[9] Miklos Szeredi, “File System in User Space,” 2006: http://fuse.sourceforge
.net.

[10] Wittawat Tantisiriroj, Swapnil Patil, and Garth Gibson, “Data-intensive
File Systems for Internet Services: A Rose by any Other Name...” Technical
Report CMU-PDL-08-114, Parallel Data Laboratory, CMU, Pittsburgh, PA,
October 2008.

[11] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D.E. Long, and
Carlos Maltzahn, “Ceph: A Scalable, High-Performance Distributed File
System,” Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, WA, November 2006.

[12] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn.
“CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data,”
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC ’06),
Tampa, FL, November 2006.

[13] Sage A. Weil, Andrew Leung, Scott A. Brandt, and Carlos Maltzahn.
“Rados: A Fast, Scalable, and Reliable Storage Service for Petabyte-Scale
Storage Clusters,” Proceedings of the 2007 ACM Petascale Data Storage Workshop
(PDSW ’07), Reno, NV, November 2007.

[14] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and Ethan L. Miller,
“Dynamic Metadata Management for Petabyte-Scale File Systems,” Proceed-
ings of the 2004 ACM/IEEE Conference on Supercomputing (SC ’04), Pittsburgh,
PA, November 2004.

[15] Brent Welch, “POSIX I/O Extensions for HPC,” Proceedings of the 4th
USENIX Conference on File and Storage Technologies (FAST), December 2005.

[16] Tom White, “The Small Files Problem,” February 2, 2009: http://www
.cloudera.com/blog/2009/02/02/the-small-files-problem/.

[17] Alex Nelso, “Support for Ceph Kernel Client,” ASF JIRA: https://issues.
apache.org/jira/browse/HADOOP-6779, May 2010.

