
6 ; LO G I N : VO L . 35, N O. 2

k o n s ta n t i n V. s h V a c h k o

HDFS scalability: the
limits to growth

Konstantin V. Shvachko is a principal software
engineer at Yahoo!, where he develops HDFS. He
specializes in efficient data structures and algo-
rithms for large-scale distributed storage systems.
He discovered a new type of balanced trees, S-trees,
for optimal indexing of unstructured data, and he
was a primary developer of an S-tree-based Linux
file system, treeFS, a prototype of reiserFS. Konstan-
tin holds a Ph.D. in computer science from Moscow
State University, Russia. He is also a member of
the Project Management Committee for Apache
Hadoop.

shv@yahoo-inc.com

t h e h a d o o p d I s t r I b u t e d f I l e s y s -
tem (HDFS) is an open source system
 currently being used in situations where
massive amounts of data need to be pro-
cessed. Based on experience with the
largest deployment of HDFS, I provide an
analysis of how the amount of RAM of a
single namespace server correlates with
the storage capacity of Hadoop clusters,
outline the advantages of the single-node
namespace server architecture for linear
performance scaling, and establish practi-
cal limits of growth for this architecture.
This study may be applicable to issues with
other distributed file systems.

By software evolution standards Hadoop is a young
project. In 2005, inspired by two Google papers,
Doug Cutting and Mike Cafarella implemented the
core of Hadoop. Its wide acceptance and growth
started in 2006 when Yahoo! began investing in its
development and committed to use Hadoop as its
internal distributed platform. During the past sev-
eral years Hadoop installations have grown from
a handful of nodes to thousands. It is now used in
many organizations around the world.

In 2006, when the buzzword for storage was
Exabyte, the Hadoop group at Yahoo! formulated
long-term target requirements [7] for the Hadoop
Distributed File System and outlined a list of
projects intended to bring the requirements to life.
What was clear then has now become a reality: the
need for large distributed storage systems backed
by distributed computational frameworks like Ha-
doop MapReduce is imminent.

Today, when we are on the verge of the Zettabyte
Era, it is time to take a retrospective view of the
targets and analyze what has been achieved, how
aggressive our views on the evolution and needs of
the storage world have been, how the achievements
compare to competing systems, and what our lim-
its to growth may be.

The main four-dimensional scale requirement targets
for HDFS were formulated [7] as follows:

10PB capacity x 10,000 nodes x
100,000,000 files x 100,000 clients

The biggest Hadoop clusters [8, 5], such as the
one recently used at Yahoo! to set sorting records,
consist of 4000 nodes and have a total space capac-

; LO G I N : A pr I L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 7

ity of 14PB each. Many production clusters run on 3000 nodes with 9PB
storage capacities.

Hadoop clusters have been observed handling more than 100 million objects
maintained by a single namespace server with a total capacity of 100 million
files.

Four thousand node clusters successfully ran jobs with a total of more than
14,000 tasks reading from or writing to HDFS simultaneously.

Table 1 compares the targets with the current achievements:

Target Deployed

Capacity 10PB 14PB

Nodes 10,000 4000

Clients 100,000 15,000

Files 100,000,000 60,000,000

T A b L e 1 : T A r g e T s f O r H D f s V s . A c T u A L Ly D e p L O y e D V A L u e s
A s O f 2 0 0 9

The bottom line is that we achieved the target in petabytes and got close to
the target in the number of files, but this is done with a smaller number of
nodes, and the need to support a workload close to 100,000 clients has not
yet materialized.

The question is now whether the goals are feasible with the current system
architecture. And the main concern is the single namespace server architec-
ture. This article studies scalability and performance limitations imposed on
HDFS by this architecture.

The methods developed in this work could be useful or applicable to other
distributed systems with similar architecture.

The study is based on experience with today’s largest deployments of Ha-
doop. The performance benchmarks were run on real clusters, and the stor-
age capacity estimates were verified by extrapolating measurements taken
from production systems.

HDfS at a Glance

Being a part of Hadoop core and serving as a storage layer for the Hadoop
MapReduce framework, HDFS is also a stand-alone distributed file system
like Lustre, GFS, PVFS, Panasas, GPFS, Ceph, and others. HDFS is opti-
mized for batch processing focusing on the overall system throughput rather
than individual operation latency.

As with most contemporary distributed file systems, HDFS is based on an
architecture with the namespace decoupled from the data. The namespace
forms the file system metadata, which is maintained by a dedicated server
called the name-node. The data itself resides on other servers called data-
nodes.

The file system data is accessed via HDFS clients, which first contact the
name-node for data location and then transfer data to (write) or from (read)
the specified data-nodes (see Figure 1).

The main motivation for decoupling the namespace from the data is the
scalability of the system. Metadata operations are usually fast, whereas data
transfers can last a long time. If a combined operation is passed through
a single server (as in NFS), the data transfer component dominates the

8 ; LO G I N : VO L . 35, N O. 2

response time of the server, making it a bottleneck in a highly distributed
environment.

In the decoupled architecture, fast metadata operations from multiple clients
are addressed to the (usually single) namespace server, and the data transfers
are distributed among the data servers utilizing the throughput of the whole
cluster.

The namespace consists of files and directories. Directories define the hier-
archical structure of the namespace. Files—the data containers—are divided
into large (128MB each) blocks.

The name-node’s metadata consist of the hierarchical namespace and a block
to data-node mapping, which determines physical block locations.

In order to keep the rate of metadata operations high, HDFS keeps the whole
namespace in RAM. The name-node persistently stores the namespace image
and its modification log (the journal) in external memory such as a local or a
remote hard drive.

The namespace image and the journal contain the HDFS file and directory
names and their attributes (modification and access times, permissions,
quotas), including block IDs for files, but not the locations of the blocks. The
locations are reported by the data-nodes via block reports during startup
and then periodically updated once an hour by default.

If the name-node fails, its latest state can be restored by reading the
namespace image and replaying the journal.

f i g u r e 1 : A n H D f s r e A D r e q u e s T s T A r T s w i T H T H e c L i e n T m A k -
i n g A r e q u e s T T O T H e n A m e - n O D e u s i n g A f i L e p A T H , g e T T i n g
p H y s i c A L b L O c k L O c A T i O n s , A n D T H e n A c c e s s i n g D A T A - n O D e s
f O r T H O s e b L O c k s .

Namespace Limitations

HDFS is built upon the single-node namespace server architecture.

Since the name-node is a single container of the file system metadata, it
naturally becomes a limiting factor for file system growth. In order to make
metadata operations fast, the name-node loads the whole namespace into its
memory, and therefore the size of the namespace is limited by the amount of
RAM available to the name-node.

Estimates show [12] that the name-node uses fewer than 200 bytes to store a
single metadata object (a file inode or a block). According to statistics on our
clusters, a file on average consists of 1.5 blocks, which means that it takes
600 bytes (1 file object + 2 block objects) to store an average file in name-

; LO G I N : A pr I L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 9

node’s RAM. This estimate does not include transient data structures, which
the name-node creates for replicating or deleting blocks, etc., removing them
when finished.

CONCLusION 1

If

objSize■■ is the size of a metadata object,
λ■■ is the average file to block ratio, and
F■■ is the total number of files,

then the memory footprint of the namespace server will be at least

RAM ≥ F . 1 + λ     . objSize¬ ¬

Particularly, in order to store 100 million files (referencing 200 million
blocks) a name-node should have at least 60GB (108 . 600) of RAM. This
matches observations on deployed clusters.

replication

HDFS is designed to run on highly unreliable hardware. On Yahoo’s long-
running clusters we observe a node failure rate of 2–3 per 1000 nodes a day.
On new (recently out of the factory) nodes, the rate is three times higher.

In order to provide data reliability HDFS uses block replication. Initially,
each block is replicated by the client to three data-nodes. The block copies
are called replicas. A replication factor of three is the default system param-
eter, which can either be configured or specified per file at creation time.

Once the block is created, its replication is maintained by the system auto-
matically. The name-node detects failed data-nodes, or missing or corrupted
individual replicas, and restores their replication by directing the copying of
the remaining replicas to other nodes.

Replication is the simplest of known data-recovery techniques. Other tech-
niques, such as redundant block striping or erasure codes, are applicable
and have been used in other distributed file systems such as GPFS, PVFS,
Lustre, and Panasas [1, 3, 6, 10]. These approaches, although more space
efficient, also involve performance tradeoffs for data recovery. With strip-
ing, depending on the redundancy requirements, the system may need to
read two or more of the remaining data segments from the nodes it has been
striped to in order to reconstruct the missing one. Replication always needs
only one copy.

For HDFS, the most important advantage of the replication technique is that
it provides high availability of data in high demand. This is actively ex-
ploited by the MapReduce framework, as it increases replications of configu-
ration and job library files to avoid contention during the job startup, when
multiple tasks access the same files simultaneously.

Each block replica on a data-node is represented by a local (native file
system) file. The size of this file equals the actual length of the block and
does not require extra space to round it up to the maximum block size, as
traditional file systems do. Thus, if a block is half full it needs only half of
the space of the full block on the local drive. A slight overhead is added,
since HDFS also stores a second, smaller metadata file for each block replica,
which contains the checksums for the block data.

10 ; LO G I N : VO L . 35, N O. 2

Replication is important both from reliability and availability points of view,
and the default replication value of 3 seem to be reasonable in most cases for
large, busy clusters.

StoraGe CapaCity vS. NameSpaCe Size

With 100 million files each having an average of 1.5 blocks, we will have
200 million blocks in the file system. If the maximal block size is 128MB
and every block is replicated three times, then the total disk space required
to store these blocks is close to 60PB.

CONCLusION 2

If

blockSize■■ is the maximal block size,

r■■ is the average block replication,

λ■■ is the average file-to-block ratio, and

F■■ is the total number of files,

then the storage capacity (SC) referenced by the namespace will not
 exceed

SC ≤ F . λ . r . blockSize

Comparison of Conclusions 1 and 2 leads us to the following rule.

ruLE 1

As a rule of thumb, the correlation between the representation of the
metadata in RAM and physical storage space required to store data ref-
erenced by this namespace is:

1GB metadata ≈ 1PB physical storage

The rule should not be treated the same as, say, the Pythagorean Theorem,
because the correlation depends on cluster parameters, the block-to-file
ratio, and the block size, but it can be used as a practical estimate for config-
uring cluster resources.

CLuSter Size aND NoDe reSourCeS

Using Conclusion 2, we can estimate the number of data-nodes the cluster
should have in order to accommodate namespace of a certain size.

On Yahoo’s clusters, data-nodes are usually equipped with four disk drives
of size 0.75–1TB, and configured to use 2.5–3.5TB of that space per node.
The remaining space is allocated for MapReduce transient data, system logs,
and the OS.

If we assume that an average data-node capacity is 3TB, then we will need
on the order of 20,000 nodes to store 60PB of data. To be consistent with
the target requirement of 10,000 nodes, each data-node should be config-
ured with eight hard drives.

CONCLusION 3

In order to accommodate data referenced by a 100 million file
namespace, an HDFS cluster needs 10,000 nodes equipped with eight
1TB hard drives. The total storage capacity of such a cluster is 60PB.

; LO G I N : A pr I L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 11

Note that these estimates are true under the assumption that the block-per-
file ratio of 1.5 and the block size remain the same. If the ratio or the block
size increases, a gigabyte of RAM will support more petabytes of physical
storage, and vice versa.

Sadly, based on practical observations, the block-to-file ratio tends to decrease
during the lifetime of a file system, meaning that the object count (and
therefore the memory footprint) of a single namespace server grows faster
than the physical data storage. That makes the object-count problem, which
becomes a file-count problem when λ → 1, the real bottleneck for cluster
 scalability.

bLoCk reportS, HeartbeatS

The name-node maintains a list of registered data-nodes and blocks belong-
ing to each data-node.

A data-node identifies block replicas in its possession to the name-node by
sending a block report. A block report contains block ID, length, and the gen-
eration stamp for each block replica.

The first block report is sent immediately after the data-node registration. It
reveals block locations, which are not maintained in the namespace image
or in the journal on the name-node. Subsequently, block reports are sent
periodically every hour by default and serve as a sanity check, providing
that the name-node has an up-to-date view of block replica distribution on
the cluster.

During normal operation, data-nodes periodically send heartbeats to the
name-node to indicate that the data-node is alive. The default heartbeat
interval is three seconds. If the name-node does not receive a heartbeat from
a data-node in 10 minutes, it pronounces the data-node dead and schedules
its blocks for replication on other nodes.

Heartbeats also carry information about total and used disk capacity and the
number of data transfers currently performed by the node, which plays an
important role in the name-node’s space and load-balancing decisions.

The communication on HDFS clusters is organized in such a way that the
name-node does not call data-nodes directly. It uses heartbeats to reply to
the data-nodes with important instructions. The instructions include com-
mands to:

Replicate blocks to other nodes■■

Remove local block replicas■■

Re-register or shut down the node■■

Send an urgent block report■■

These commands are important for maintaining the overall system integrity;
it is therefore imperative to keep heartbeats frequent even on big clusters.
The name-node is optimized to process thousands of heartbeats per second
without affecting other name-node operations.

tHe iNterNaL LoaD

The block reports and heartbeats form the internal load of the cluster. This
load mostly depends on the number of data-nodes. If the internal load is too
high, the cluster becomes dysfunctional, able to process only a few, if any,
external client operations such as 1s, read, or write.

12 ; LO G I N : VO L . 35, N O. 2

This section analyzes what percentage of the total processing power of the
name-node is dedicated to the internal load.

Let’s assume the cluster is built of 10,000 data-nodes having eight hard
drives with 6TB of effective storage capacity each. This is what it takes, as
we learned in previous sections, to conform to the targeted requirements.

As usual, our analysis is based on the assumption that the block-to-file ratio
is 1.5.

The ratio particularly means that every other block on a data-node is half full.
If we group data-node blocks into pairs having one full block and one half-full
block, then each pair will occupy approximately 200 MB ≈ 128 MB + 64 MB
on a hard drive. This gives us an estimate that a 6 TB (8 HD x 0.75 TB) node
will hold 60,000 blocks. This is the size of an average block report sent by a
data-node to the name-node.

The sending of block reports is randomized so that they do not come to
the name-node together or in large waves. Thus, the average number of block
reports the name-node receives is 10,000/hour, which is about three reports per
second.

The heartbeats are not explicitly randomized by the current implementa-
tion and, in theory, can hit the name-node together, although the likelihood
of this is very low. Nevertheless, let’s assume that the name-node should be
able to handle 10,000 heartbeats per second on a 10,000 node cluster.

In order to measure the name-node performance, I implemented a bench-
mark called NNThroughputBenchmark, which now is a standard part of the
HDFS code base.

NNThroughputBenchmark is a single-node benchmark, which starts a
name-node and runs a series of client threads on the same node. Each client
repetitively performs the same name-node operation by directly calling the
name-node method implementing this operation. Then the benchmark mea-
sures the number of operations performed by the name-node per second.

The reason for running clients locally rather than remotely from different
nodes is to avoid any communication overhead caused by RPC connections
and serialization, and thus reveal the upper bound of pure name-node per-
formance.

The following numbers were obtained by running NNThroughputBench-
mark on a node with two quad-core Xeon CPUs, 32GB RAM, and four 1TB
hard drives.

Table 2 summarizes the name-node throughput with respect to the two in-
ternal operations. Note that the block report throughput is measured in the
number of blocks processed by the name-node per second.

Throughput

Number of blocks processed in
block reports per second

639,713

Number of heartbeats per second 300,000

T A b L e 2 : b L O c k r e p O r T A n D H e A r T b e A T T H r O u g H p u T

We see that the name-node is able to process more than 10 reports per
second, each consisting of 60,000 blocks. As we need to process only three
reports per second, we may conclude that less than 30% of the name-node’s
total processing capacity will be used for handling block reports.

; LO G I N : A pr I L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 13

The heartbeat load is 3.3%, so that the combined internal load of block
reports and heartbeats is still less than 30%.

CONCLusION 4

The internal load for block reports and heartbeat processing on a
10,000-node HDFS cluster with a total storage capacity of 60 PB will
consume 30% of the total name-node processing capacity.

Thus, the internal cluster load directly depends on the average block report
size and the number of the reports. The impact of heartbeats is negligible.

Another way to say this is that the internal load is proportional to the
number of nodes in the cluster and the average number of blocks on a node.
Thus, if a node had only 30,000 blocks, half of the estimated amount, then
the name-node would dedicate only 15% of its processing resources to the
internal load, because the nodes would send the same number of block re-
ports but the size of the block reports would be smaller by a half compared
to the original estimate.

Conversely, if the average number of blocks per node grows, then the in-
ternal load will grow proportionally. In particular, it means the decrease in
block-to-file ratio (more small files with the same file system size) increases
the internal load and therefore negatively affects the performance of the
system.

reaSoNabLe LoaD expeCtatioNS

The good news from the previous section is that the name-node can still
use 70% of its time to process external client requests. If all the clients started
sending arbitrary requests to the name-node with very high frequency, the
name-node most probably would have a hard time coping with the load
and would become unresponsive, potentially sending the whole cluster into
a tailspin, because internal load requests do not have priority over regular
client requests. But this can happen even on smaller clusters with extreme
load levels.

The goal of this section is to determine reasonable load expectations on a large
cluster (10,000 nodes, 60PB of data) and estimate whether the name-node
would be able to handle it.

Regular Hadoop clusters run MapReduce jobs. We first assume that all our
100,000 clients running different tasks provide read-only load on the HDFS
cluster. This is typical for the map stage of a job execution.

Usually a map task produces map output, which is written to a local hard
drive. Since MapReduce servers (task-trackers) share nodes with HDFS data-
nodes, map output inevitably competes with HDFS reads. This reduces the
HDFS read throughput, but also decreases the load on the name-node. Thus,
for the sake of this analysis we may assume that our tasks do not produce any
output, because otherwise the load on the name-node would be lower.

Typically, a map task reads one block of data. In our case, files consist of
1.5 blocks. Thus an average client reads a chunk of data of size 96MB (1.5
* 128MB/2) and we may assume that the size of a read operation per client is
96MB.

Figure 1 illustrates that client reads conceptually consist of two stages:

Get block locations from the name-node.1.

Pull data (block replica) from the nearest data-node.2.

14 ; LO G I N : VO L . 35, N O. 2

We will estimate how much time it takes for a client to retrieve a block rep-
lica and, based on that, derive how many “get block location” requests the
name-node should expect per second from 100,000 clients.

DFSIO was one of the first standard benchmarks for HDFS. The bench-
mark is a map-reduce job with multiple mappers and a single reducer. Each
mapper writes (reads) bytes to (from) a distinct file. Mappers within the job
either all write or all read, and each mapper transfers the same amount of
data. The mappers collect the I/O stats and pass them to the reducer. The
reducer averages them and summarizes the I/O throughput for the job. The
key measurement here is the byte transfer rate of an average mapper.

The following numbers were obtained on a 4000-node cluster [8] where the
name-node configuration is the same as in NNThroughputBenchmark and
data-nodes differ from the name-node only in that they have 8GB RAM.
The cluster consists of 100 racks with 1 gigabit Ethernet inside a rack and 4
gigabit uplink from rack.

Table 3 summarizes the average client read and write throughput provided
by DFSIO benchmark.

Throughput

Average read throughput 66 MB/s

Average write throughput 40 MB/s

T A b L e 3 : H D f s r e A D A n D w r i T e T H r O u g H p u T

We see that an average client will read 96MB in 1.45 seconds. According to
our assumptions, it will then go to the name-node to get block locations for
another chunk of data or a file. Thus, 100,000 clients will produce 68,750
get-block-location requests to the name-node per second.

Another series of throughput results [11] produced by NNThroughputBench-
mark (Table 4) measures the number of “open” (the same as “get block loca-
tion”) and “create” operations processed by the name-node per second:

Throughput

Get block locations 126,119 ops/s

Create new block 5,600 ops/s

T A b L e 4 : O p e n A n D c r e A T e T H r O u g H p u T

This shows that with the internal load at 30% the name-node will be able to
process more than 88,000 get-block-location operations, which is enough to
handle the read load of 68,750 ops/sec.

CONCLusION 5

A 10,000-node HDFS cluster with internal load at 30% will be able to
handle an expected read-only load produced by 100,000 HDFS clients.

The write performance looks less optimistic. For writes we consider a dif-
ferent distcp-like job load, which produces a lot of writes. As above, we
assume that an average write size per client is 96MB. According to Table 3,
an average client will write 96MB in 2.4 seconds. This provides an average
load of 41,667 create-block requests per second from 100,000 clients, and
this is way above 3,920 creates per second—70% of the possible process-
ing capacity of the name-node (see Table 4). Furthermore, this does not yet
take into account the 125,000 confirmations (three per block-create) sent
by data-nodes to the name-node for each successfully received block replica.

; LO G I N : A pr I L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 15

Although these confirmations are not as heavy as create-blocks, this is still a
substantial additional load.

Even at 100% processing capacity dedicated to external tasks (no internal
load), the clients will not be able to run at “full speed” with writes. They
will experience substantial idle cycles waiting for replies from the name-
node.

CONCLusION 6

A reasonably expected write-only load produced by 100,000 HDFS cli-
ents on a 10,000-node HDFS cluster will exceed the throughput capac-
ity of a single name-node.

Distributed systems are designed with the expectation of linear perfor-
mance scaling: more workers should be able to produce a proportionately
larger amount of work. The estimates above (working the math backwards)
show that 10,000 clients can saturate the name-node for write-dominated
workloads. On a 10,000-node cluster this is only one client per node, while
current Hadoop clusters are set up to run up to four clients per node. This
makes the single name-node a bottleneck for linear performance scaling of
the entire cluster. There is no benefit in increasing the number of writers. A
smaller number of clients will be able to write the same amount of bytes in
the same time.

final Notes

We have seen that a 10,000 node HDFS cluster with a single name-node
is expected to handle well a workload of 100,000 readers, but even 10,000
writers can produce enough workload to saturate the name-node, making it
a bottleneck for linear scaling.

Such a large difference in performance is attributed to get block locations
(read workload) being a memory-only operation, while creates (write work-
load) require journaling, which is bounded by the local hard drive perfor-
mance.

There are ways to improve the single name-node performance, but any solu-
tion intended for single namespace server optimization lacks scalability.

Looking into the future, especially taking into account that the ratio of
small files tends to grow, the most promising solutions seem to be based on
distributing the namespace server itself both for workload balancing and for
reducing the single server memory footprint. There are just a few distributed
file systems that implement such an approach.

Ceph [9] has a cluster of namespace servers (MDS) and uses a dynamic sub-
tree partitioning algorithm in order to map the namespace tree to MDSes
evenly. [9] reports experiments with 128 MDS nodes in the entire cluster
consisting of 430 nodes. Per-MDS throughput drops 50% as the MDS cluster
grows to 128 nodes.

Google recently announced [4] that GFS [2] has evolved into a distributed
namespace server system. The new GFS can have hundreds of namespace
servers (masters) with 100 million files per master. Each file is split into
much smaller size than before (1 vs. 64 MB) blocks. The details of the de-
sign, the scalability, and performance facts are not yet known to the wider
community.

Lustre [3] has an implementation of clustered namespace on its roadmap
for the Lustre 2.2 release. The intent is to stripe a directory over multiple

16 ; LO G I N : VO L . 35, N O. 2

metadata servers (MDS), each of which contains a disjoint portion of the
namespace. A file is assigned to a particular MDS using a hash function on
the file name.

aCkNowLeDGmeNtS

I would like to thank Jakob Homan and Rik Farrow for their help with the
article.

refereNCeS

[1] P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur, “PVFS: A Parallel
File System for Linux Clusters,” Proceedings of the 4th Annual Linux Showcase
and Conference, 2000, pp. 317–327.

[2] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File System,” Pro-
ceedings of the ACM Symposium on Operating Systems Principles, Lake George,
NY, October 2003, pp. 29–43.

[3] Lustre: http://www.lustre.org.

[4] M.K. McKusick and S. Quinlan, “GFS: Evolution on Fast-
forward,” ACM Queue, vol. 7, no. 7, ACM, New York, NY. August 2009.

[5] O. O’Malley and A.C. Murthy, “Hadoop Sorts a Petabyte in 16.25 Hours
and a Terabyte in 62 Seconds,” Yahoo! Developer Network Blog, May 11,
2009: http://developer.yahoo.net/blogs/hadoop/2009/05/hadoop_sorts
_a_petabyte_in_162.html.

[6] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large
Computing Clusters,” Proceedings of FAST ’02: 1st Conference on File and Stor-
age Technologies (USENIX Association, 2002), pp. 231–244.

[7] K.V. Shvachko, “The Hadoop Distributed File System Requirements,” Ha-
doop Wiki, June 2006: http://wiki.apache.org/hadoop/DFS_requirements.

[8] K.V. Shvachko and A.C. Murthy, “Scaling Hadoop to 4000 Nodes at
Yahoo!,” Yahoo! Developer Network Blog, September 30, 2008: http://
developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_4000
_nodes_a.html.

[9] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn, “Ceph: A Scal-
able, High-Performance Distributed File System,” Proceedings of OSDI ’06: 7th
Conference on Operating Systems Design and Implementation (USENIX Associa-
tion, 2006).

[10] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J.
Zelenka, and B. Zhou, “Scalable Performance of the Panasas Parallel File Sys-
tem,” Proceedings of FAST ’08: 6th Conference on File and Storage Technologies
(USENIX Association, 2008), pp. 17–33.

[11] “Compare Name-Node Performance When Journaling Is Performed
into Local Hard-Drives or NFS,” July 30, 2008: http://issues.apache.org/
jira/browse/HADOOP-3860.

[12] “Name-Node Memory Size Estimates and Optimization Proposal,”
August 6, 2007: https://issues.apache.org/jira/browse/HADOOP-1687.

