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Some men dream of fortunes, others dream of 
cookies. 
   —fortune cookie

t h e r e ’ s  a n  I m p e n d I n g  c r I s I s ,  d r I v e n 
by the deployment of Domain Name System 
(DNS) Security (DNSSEC). DNS responses no 
longer fit in small UDP datagrams and are 
subsequently repeated in TCP sessions. We 
urgently need to robustly handle high rates 
of short-lived transactional TCP traffic and 
seamlessly segue to longer-lived sessions. 
TCP Cookie Transactions solve these prob-
lems and some denial-of-service attacks 
against TCP as well.

Current TCP implementations store enormous 
amounts of internal state for every connection. 
Heavily loaded servers can run out of memory 
and other resources simply by receiving too many 
connections (or bogus connection attempts) too 
quickly. TCP Cookie Transactions (TCPCT) deter 
spoofing of client connections and prevent server 
resource exhaustion by eliminating the need to 
maintain server state during establishment and 
after termination of connections. The TCPCT 
cookie exchange itself may optionally carry <SYN> 
data, limited in size to inhibit denial-of-service 
(DoS) attacks.

Motivation

Common DNSSEC-signed responses are as long as 
1749 bytes. During key rollover, the response could 
be more than twice that size, much larger than the 
default UDP data size of 512 bytes.

Large DNS replies over UDP permit an attacker 
to amplify a denial-of-service attack. By spoofing 
a DNS request from a victim’s IP address, an at-
tacker can turn relatively short queries over a low 
bandwidth connection into a far more devastating 
amplification attack. That’s potentially more potent 
than a generic attack, as operators cannot filter root 
server responses. Currently, only 2% of DNS root 
server queries over UDP are legitimate [33].

DNSSEC over UDP results in multiple IP fragments 
where the UDP headers and port numbers are only 
present in the first fragment. Badly implemented 
middleboxes [6]—such as stateless firewalls and 
network address translators (NAT) [28]—either 
drop all the fragments or pass the first and block 
the rest.
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A horrific number of badly implemented middleboxes rewrite DNS over 
UDP messages according to local policy. These middleboxes assume that 
packets are not fragmented. Such middleboxes are likely to remain in place 
for many years.

UDP has no reliable signal that large datagrams won’t work. Often the only 
symptom is a timeout, without any hint about which of the many possible 
problems occurred.

The burden is on DNS resolvers to try a protocol with less interference from 
middleboxes. Therefore, DNS resolvers repeat the same query over TCP.

Figure 1 shows that standard TCP creates server state immediately and re-
tains it after the connection has closed during the TCP TIME-WAIT interval 
(usually 4 minutes).

F i g u r e  1 :  W h e n  a  < s y n >  i s  r e c e i V e D ,  c u r r e n t  s e r V e r  i m p L e m e n -
t a t i O n s  c r e a t e  s t a t e  ( t h e  t c b )  a n D  m a i n t a i n  t h a t  s t a t e  u n t i L 
t h e  t i m e - W a i t  i n t e r V a L  h a s  e x p i r e D  ( u s u a L Ly  4  m i n u t e s ) .

Unfortunately, existing traffic patterns indicate that repeating most DNSSEC 
root UDP queries again over TCP would dramatically increase server load. 
After DNSSEC deployment in one major top-level domain, a 600% increase 
in TCP requests was reported [32] at the North American Network Opera-
tors Group (NANOG) meeting of June 2009.

To avoid overload, some operators are turning off the TCP port for DNS. 
That violates underlying DNS protocol expectations [2]. The inability to use 
TCP after missing or truncated UDP responses will prevent successful DNS-
SEC deployment.

TCP Cookie Transactions (TCPCT) permit TCP to be used in place of UDP 
for high-transaction-rate services without burdening servers. Operators 
can mitigate load by selective rejection of connection attempts without the 
Cookie option. Moreover, using the cryptologically secure robust cookie 
mechanism instead of UDP prevents the exploitation of amplification and 
fragmentation DoS attacks.

robust Cookies

In 1994, Phil Karn described a mechanism to avoid accumulating server 
state during an initial protocol handshake. The client sends an opaque anti-
clogging token (a “cookie”). The server responds to each communication at-
tempt by issuing its own cookie that is dependent on the client cookie, and 
it retains no state about the attempt.

The client returns this pair of cookies to the server, demonstrating a com-
plete communications path. If the client fails to reply, the server has no state 
to free.
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Karn and Simpson set forth explicit design criteria:

The computing resources themselves must also be protected against ma-
licious attack or sabotage. . . . These attacks are mitigated through using 
time-variant cookies, and the elimination of receiver state during initial 
exchanges of the protocol. [15, pp. 2–3]

It MUST NOT be possible for anyone other than the issuing entity to gen-
erate cookies that will be accepted by that entity. This implies that the 
issuing entity will use local secret information in the generation and sub-
sequent verification of a cookie. [15, p. 12; 16, p. 19]

The Responder secret value that affects its cookies MAY remain the same 
for many different Initiators. However, this secret SHOULD be changed 
periodically to limit the time for use of its cookies (typically each 60 sec-
onds). [16, p. 20]

This use of the term cookie should not be confused with other uses of 
“cookie” or “magic cookie,” such as by HTTP or X Window systems, and 
other security protocol attempts [27]. Each of these is missing one or more 
of the requirements: (1) eliminating responding server state; (2) using a local 
secret; (3) having a time limit.

Previous Papers and Proposals

Over the past 35 years, hundreds (perhaps thousands) of articles, papers, 
and reports have described network attacks using TCP: address and port 
spoofing, amplification, fragmentation, resource exhaustion, and others less 
commonly publicized [12]. Various incremental approaches have been pro-
posed.

T/TCP [4] permits lightweight TCP transactions for applications that tradi-
tionally have used UDP. However, T/TCP has unacceptable security issues 
[13, 26].

By September 1996, the long anticipated DoS attacks in the form of TCP 
SYN floods were devastating popular (and unpopular) servers and sites. Phil 
Karn informally mentioned adapting anti-clogging cookies to TCP. Perry 
Metzger proposed adding Karn’s cookies as part of a “TCP++” effort [22], and 
two years later as part of a “TCPng” discussion [23].

Daniel J. Bernstein implemented “SYN cookies,” small cookies embedded 
in the TCP SYN initial sequence number. This technique was exception-
ally clever, because it did not require cooperation of the remote party and 
could be deployed unilaterally. However, SYN cookies can only be used in 
emergencies; they are incompatible with most TCP options. As there is in-
sufficient space in the sequence number, the cookie is not considered cryp-
tologically secure. The SYN cookie mechanism remains inactive until the 
system is under attack, and thus is not well tested in operation. Because of 
these deficiencies, SYN cookies were not accepted for publication in the In-
ternet Engineering Task Force (IETF) RFC series until recently [7].

In 1999, Faber, Touch, and Yue [9] proposed using an option to negotiate 
the party that would maintain TIME-WAIT state. This permits a server to 
entirely eliminate state after closing a connection.

In 2000, the Stream Control Transmission Protocol (SCTP) [29] was pub-
lished with a mechanism partially based on Karn’s ideas. There have been a 
number of barriers to deployment of SCTP [15].

In 2006, the Datagram Congestion Control Protocol (DCCP) [18] was pub-
lished with a mechanism analogous to SYN cookies.



38 ; LO G I N :  vO L .  3 4,  N O.  6

Medina, Allman, and Floyd [21] found that the vast majority of mod-
ern TCP implementations correctly handle unknown TCP options passing 
through middleboxes. A new TCP option sent in <SYN> and returned in 
<SYN,ACK(SYN)> will reliably indicate that both parties understand the ex-
tension. But it is still prudent to follow the [RFC 793] “general principle of 
robustness: be conservative in what you do, be liberal in what you accept 
from others.”

Solving <SYn> Spoofing

The initial TCP <SYN> exchange is vulnerable to forged IP addresses, pre-
dictable ports, and discoverable sequence numbers [25]. A complete fix 
requires that IP sources be checked as they enter the provider network, en-
suring that they match those assigned to the provider’s customers. Unfortu-
nately, this ingress-filtering best current practice [11] is not widely enforced, 
and source address forged attacks continue at growing rates.

TCP Cookie Transactions (TCPCT) bolster the defense against such attacks. 
A cookie option is exchanged as the connection is opened. These cookies are 
larger and more unpredictable than addresses, ports, sequence numbers, and 
timestamps. They validate the connection between two parties.

Figure 2 demonstrates the TCPCT cookie exchange.

F i g u r e  2 :  a  n e W  t c p  O p t i O n  c a r r i e s  t h e  c O O k i e s ,  F O L L O W e D  b y 
O p t i O n a L  t r a n s a c t i O n  D a t a  i n  t h e  i n i t i a L  e x c h a n g e  ( < s y n > 
a n D  < s y n , a c k > ) .

AMPLIfICATIOn ATTACkS

TCP does not have the amplification problems of UDP [31]. A falsified source 
address on a <SYN> query results in a <SYN,ACK> response that is usually 
the same size as the query.

Unlike SCTP, TCPCT cookies are the same size in each direction, so the 
cookies themselves do not provide amplification.

Both T/TCP and a more recently proposed option [19] allow data to be 
carried on the <SYN,ACK> response, potentially allowing amplification. 
TCPCT enables sending this limited amount of data, as seen in Figure 2.

However, this optional feature is off by default, and is only enabled by an 
application on a per-port basis. Moreover, the feature may be temporar-
ily disabled during periods of congestion and/or other resource limitations, 
transparently returning to default TCP behavior.
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frAGMenTATIOn fAILureS

Problems with IP fragmentation have long been well known [17]. For ex-
ample, IP fragmentation doesn’t work reliably and, more importantly, doesn’t 
fail reliably. UDP has no segmentation and relies entirely on unreliable IP for 
fragmentation support.

TCPCT requires the TCP Timestamps Option [5], which in turn requires 
Path MTU Discovery [24] and that the Don’t Fragment (DF) bit is always set 
in the IP header.

POrT PrOBLeMS

Busy servers that deal with a large number of short transactions can experi-
ence port exhaustion.

For example, a Network Address Translator (NAT) maps routed hosts to its 
address, commonly implemented by assigning each connection to a different 
port [28]. When many hosts behind a NAT communicate with a common 
server, a port number must be assigned to each transaction. If too many 
transactions happen in rapid succession, the NAT will run out of port num-
bers.

DNS caching resolvers provide another example. When many hosts make 
queries through a caching resolver to a common server, a port number must 
be assigned to each transaction. If too many queries happen in rapid succes-
sion, the resolver will run out of port numbers. Repeated querying and ag-
gressive retransmission [20] exacerbate these problems.

A closed TCP port must not be reused until a (TCP TIME-WAIT) timeout 
period has expired. If old port numbers are recycled too quickly, mes-
sages intended for the closed session cannot be distinguished from a newly 
opened session, appearing to be delayed duplicate transmissions.

TCPCT obviates antique duplicate transmissions by entirely eliminating 
server state after the <FIN> exchange. Only the client retains prior connec-
tion state for the required TCP TIME-WAIT period (see Figure 2).

TCPCT also handles reusing prior port numbers, by defining procedures 
that safely emulate persistent connections. Cookies and timestamps easily 
differentiate new sessions.

Most applications already follow the end-to-end principle and use the TCP 
close only as an optimization. Their data format provides all the necessary 
semantics for their needs.

TCPCT treats any closing <FIN> as advisory until it has been acknowledged 
by both parties. Like the <SYN>, each <FIN> is accompanied by the session 
cookies and timestamps. This inhibits a connection assassination attack with 
<FIN>.

reSOurCe reCYCLInG

When a TCP <SYN> arrives with an unreachable source address, the target 
reserves transmission control block (TCB) resources and waits for a response 
to its <SYN,ACK>. These are called half-open connections. An attacker can 
repeatedly open connections with bogus source addresses, causing a target 
to retain state for each half-open connection until there are no resources for 
legitimate connections.
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Moreover, busy servers that deal with a large number of short transactions 
can have legitimate problems with TCB exhaustion. If the number of differ-
ent clients connecting to a server locks up too much server memory, then 
persistent connections will make the problem worse.

Using a different strategy, attackers need only open some long-running Ini-
tiators that do nothing or do things very slowly as a different form of DoS 
attack. TCPCT works with the TCP User Timeout Option [8] to limit accu-
mulation of inactive connections.

TCPCT ameliorates TCB exhaustion by eliminating server state during the 
<SYN> exchange and again after the <FIN> exchange. Optional <SYN> data 
entirely eliminates TCB state for short transactions. After the connection has 
closed, state is retained only by the client for the required TCP TIME-WAIT 
period (see Figure 2, above).

TerMInATIOn TrOuBLeS

Perhaps the greatest security vulnerability of TCP itself is using an error in-
dication (<RST>) to affect the operation of the protocol. This leads to TIME-
WAIT assassination by antique duplicates [3], and connection assassination 
by third parties [10, 30].

TCPCT treats <RST> as advisory. Like the <SYN> and <FIN>, each <RST> is 
accompanied by the session cookies and timestamps. This inhibits a connec-
tion assassination attack with <RST>.

While cookies prevent most spoofed assassination attacks, the initial <SYN> 
exchange is particularly vulnerable. An attacker that can guess other fields 
could send a <RST> before the Responder <SYN,ACK> arrives with a proper 
cookie. The Initiator will not know about the attack.

Furthermore, cookies cannot defend against monkey-in-the-middle (MITM) 
attackers—where an attacker can record and/or reflect cookie, sequence, and 
timestamp values. Figure 3 demonstrates a standard TCP <SYN> assassina-
tion using <RST>.

F i g u r e  3 :  u s i n g  a n   i n j e c t e D  < r s t >  p a c k e t  t O  a s s a s s i n a t e  a 
t c p  c O n n e c t i O n

Therefore, receipt of <RST> has no effect on the operation of the protocol. 
All <RST> segments are merely counted [1, sec. 1.2.3]. Transmission will 
continue until a timeout expires [1, secs. 4.2.2.20(h), 4.2.3.5]. Arguably, this 
is the only substantial TCPCT change in TCP semantics.

Summary and exhortation

TCP Cookie Transactions (TCPCT) provide a cryptologically secure mecha-
nism to guard against simple flooding attacks sent with bogus IP sources or 
TCP ports.
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TCPCT entirely eliminates server state during connection establishment and 
after termination, and it inhibits premature closing of connections. Also, im-
plementations may optionally exchange limited amounts of transaction data 
during the initial cookie exchange, reducing round trips in short transac-
tions.

Finally, implementations may optionally rapidly recycle prior connections. 
For otherwise stateless applications, this transparently facilitates persistent 
connections and pipelining of requests over each connection, reducing net-
work latency and host task context switching.

We expect soon to have TCPCT implementations tested and deployed in 
some root and TLD servers. As caching resolvers and clients are updated, 
the load on servers should decrease.

Gentle reader, we hope that the numerous benefits of TCPCT will inspire 
you to request implementation and deployment on your favorite systems.
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