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c u m u l u s  I s  a  s y s t e m  f o r  e f f I c I e n t ly 
implementing filesystem backups over the 
Internet, taking advantage of the growing 
availability of cheap storage options avail-
able online. Cloud service offerings such as 
Amazon’s Simple Storage Service (S3), a part 
of Amazon Web Services, offer cheap stor-
age at a fixed cost per gigabyte (no mini-
mums or maximums) and are appealing for 
backup, since they provide an easy way to 
safely store data off-site. 

There are pre-packaged online services specifically 
built for backup, such as Mozy and Carbonite. Cu-
mulus explores the other end of the design space: 
building on top of a very generic cloud storage 
layer, an example of what we refer to as building 
on the “thin cloud.” Using a generic, minimalist in-
terface means that Cumulus is portable to virtually 
any online storage service—the client implements 
all application logic. Cumulus is not unique in this 
approach, but compared with existing backup tools 
targeting S3, Cumulus achieves lower costs, show-
ing that this limited interface is not an impediment 
to achieving a very low and competitive cost for 
backup. 

related Tools

Unlike many traditional backup tools, Cumulus is 
not designed to stream backup data to tape. Cumu-
lus instead takes advantage of the random access to 
files provided by online storage services—though it 
does still group writes together, since remote stor-
age operations have a cost. 

Unlike tools such as rsync, rdiff-backup, and 
boxbackup, no specialized code for Cumulus ex-
ecutes at the remote storage server. Cumulus can-
not rely on a customized network protocol or run 
code at the server to manipulate snapshot data di-
rectly. However, like these systems, Cumulus does 
still attempt to be network-efficient, sending only 
changes to files over the network. If a user restores 
data, the client is responsible for reconstructing 
the snapshots from any deltas that were sent previ-
ously. 

Other backup tools exist that target Amazon S3. 
Jungle Disk is a general-purpose network filesys-
tem with S3 as the backing store; it can be used 
to store backups but has higher overhead, since it 
is optimized for random access to files. Brackup 
is quite similar to Cumulus, though Cumulus in-
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cludes aggregation and cleaning mechanisms (described later) and can more 
efficiently represent incremental changes. Duplicity represents incremental 
backups very efficiently but cannot easily delete old snapshots. All of these 
systems, like Cumulus, can encrypt data before it is stored at the remote 
server. 

Design

Cumulus stores backups on a remote server but, to be as portable as pos-
sible, imposes very few requirements on the server. Only four operations 
are required: put/get for storing and retrieving files, list for identifying data 
that is stored, and delete for reclaiming space. Cumulus does not depend 
upon the ability to read or write subsets of a file, nor does it need (or even 
use) support for reading and setting file attributes such as permissions and 
timestamps. The interface is simple enough to be implemented on top of any 
number of protocols: FTP, SFTP, WebDAV, Amazon’s S3, or nearly any net-
work file system. 

Cumulus also adopts a write-once storage model: a file is never modified after 
it is first stored, except to be deleted to recover space. The write-once model 
provides convenient failure guarantees. Since files are never modified in 
place, a failed backup run cannot corrupt old snapshots. At worst, a failure 
will leave a partially written snapshot which can later be garbage-collected. 
Cumulus can keep snapshots at multiple points in time simply by not delet-
ing the files that make up old snapshots. 

F i g u r e  1 :  s i m p L i F i e d  s c h e m A t i c  O F  t h e  b A s i c  F O r m A t  F O r  s t O r -
i n g  s n A p s h O t s  O n  A  s t O r A g e  s e r V e r .  t w O  s n A p s h O t s  A r e 
s h O w n ,  t A k e n  O n  s u c c e s s i V e  d A y s .  e A c h  s n A p s h O t  c O n t A i n s 
t w O  F i L e s .  f i l e 1  c h A n g e s  b e t w e e n  t h e  t w O  s n A p s h O t s ,  b u t  t h e 
d A t A  F O r  f i l e 2  i s  s h A r e d  b e t w e e n  t h e  s n A p s h O t s .  F O r  s i m p L i c -
i t y  i n  t h i s  F i g u r e ,  s e g m e n t s  h A V e  L e t t e r s  A s  n A m e s  i n s t e A d 
O F  t h e  1 2 8 - b i t  u u i d s  u s e d  i n  p r A c t i c e .

The basic Cumulus snapshot format is illustrated in Figure 1. A snapshot 
logically consists of two main parts. A metadata log lists all the files backed 
up as well as ownership, modification times, and similar information. Cu-
mulus stores file data separately. Both data and metadata are broken apart 

Segment A

Segment B

Segment Store

name: file1

owner: root

data: B/0

name: file2

owner: root

data: B/1 B/2

Date: 2008-01-01 12:00:00

Root: A/0

Segments: A B

Segment C

name: file1

owner: root

data: C/1

name: file2

owner: root

data: B/1 B/2

Date: 2008-01-02 12:00:00

Root: C/0

Segments: B C 

Snapshot Descriptors
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into smaller blocks, and a backup is structured as a tree (or sometimes a di-
rected acyclic graph)—the block at the start of the metadata log contains 
pointers to other portions of the metadata log, which eventually contains 
pointers to data blocks for files. Cumulus stores metadata in textual, not bi-
nary, format. A snapshot descriptor points to the root of each backup snap-
shot. 

Where duplicate data exists there may be multiple pointers to the same data 
blocks, making backups more space-efficient. Successive backup snapshots 
look something like the snapshots in a copy-on-write filesystem: multiple 
backup roots exist, but, when unchanged, data and metadata blocks are 
shared between the snapshots. 

Aggregation and cleaning

Backups in Cumulus would be straightforward if each backup were sim-
ply stored as a collection of blocks as described. However, these blocks will 
often be fairly small and, for many storage back ends, there is a penalty for 
storing large numbers of small files. For example, in addition to per-byte up-
load costs, Amazon S3 charges a small amount for each put operation. 

To reduce costs, Cumulus aggregates blocks before sending them to a stor-
age server. The example in Figure 1 illustrates this. We say that blocks are 
aggregated into segments, and Cumulus stores each segment as a separate file 
on the remote storage server. Each segment is internally structured as a tar 
file (so standard UNIX tools can unpack it), and segments may be filtered 
through a compression program (such as gzip) or encrypted (with gpg) be-
fore being sent over the network. Each segment has a unique name; we use 
a randomly generated 128-bit UUID so that segment names can be assigned 
without central coordination. Blocks are numbered sequentially within a 
segment. 

Aggregation of data into segments can decrease costs but brings added com-
plexity. When old snapshots are no longer needed, Cumulus reclaims space 
by garbage-collecting unused segments. It may be, however, that some seg-
ments only contain a small fraction of useful data. The remainder of these 
segments—data used only by deleted snapshots—is now wasted space. This 
problem is similar to the problem of reclaiming space in the Log-Structured 
File System (LFS) [1]. 

To reclaim space, Cumulus includes a segment cleaner that operates in two 
steps. First, it identifies segments which contain very little data and marks 
them as expired. Then, on the following backup run, Cumulus re-uploads 
(in new segments) any data that is still needed from the expired segments. 
Segment cleaning never requires downloading old segments. Cleaning can-
not immediately delete expired segments when old snapshots still refer to 
them, but Cumulus can free them as the older snapshots are deleted. 

Implementation

Our prototype Cumulus implementation is relatively compact: only slightly 
over 3,200 lines of C++ source code implementing the core backup func-
tionality, along with another roughly 1,000 lines of Python for tasks such as 
restores, segment cleaning, and statistics gathering. 

Each client stores on its local disk information about recent backups, pri-
marily so that it can detect which files have changed and properly reuse 
blocks from previous snapshots. We do not need this information to recover 
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data from a backup so its loss is not catastrophic, but this local state does 
enable various performance optimizations during backups. 

To simplify the implementation and keep Cumulus flexible, we implement 
several tasks as external scripts. Helper scripts filter data to perform com-
pression and encryption. External scripts also handle file transfers—local 
storage and transfers to Amazon S3 are supported, but adding additional 
storage back-ends is straightforward. 

Some files, such as log files or database files, may only be partly changed be-
tween backup runs. Our Cumulus implementation can efficiently represent 
these partial changes to files: the metadata log entry for a file can refer to a 
mixture of old and new blocks, or even parts of blocks. Cumulus computes 
these sub-file incrementals in a manner similar to that used in the Low-
Bandwidth File System [2]: it divides data into variable-sized chunks of ap-
proximately 4KB, and it detects duplicate data between different versions of 
a file at a chunk granularity. 

We implemented the restore functionality in Python. To reduce disk space 
requirements, the restore tool downloads segments as needed during the re-
store instead of all at once at the start. When restoring selected files from a 
snapshot, it downloads only the necessary segments. Cumulus also includes 
a FUSE interface that allows a collection of backup snapshots to be mounted 
as a virtual filesystem on Linux, thereby providing random access with stan-
dard filesystem tools. 

evaluation

We use both trace-based simulation and a prototype implementation to eval-
uate the use of thin cloud services for remote backup. To drive our evalu-
ation of Cumulus we replay a set of backups (taken with earlier versions 
of Cumulus) from a personal computer. These snapshots cover a period of 
over seven months and include an average of 2.4GB of data in each snap-
shot, with 40MB of data created or modified each day. In the FAST con-
ference paper [3] we also consider traces taken from a research group file 
server. However, the end-user scenario is both more demanding (in terms 
of overhead within Cumulus) and likely more similar to expected uses for 
 Cumulus. 

Backup simulations

Most of the overhead introduced by Cumulus is due to aggregation of data 
into segments and the associated cleaning costs. To better understand how 
this overhead depends on the details of aggregation and cleaning, we con-
sider different scenarios in simulation using trace data, which allows us to 
explore the many possible parameter settings quickly. 

The simulator tracks three overheads associated with performing backups, 
corresponding to the three quantities for which online services typically 
charge: daily storage requirements, network uploads, and an operation count 
(number of segments uploaded). The simulator makes several simplifica-
tions—it ignores file compression, sub-file incrementals, and file metadata 
overhead—but the prototype evaluation includes these. 

In this simplified setting we compare Cumulus against an idealized opti-
mal backup in which no space is wasted due to aggregation. In the optimal 
backup, each unique piece of data is transferred over the network and stored 
only once. 
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F i g u r e  2 :  O V e r h e A d s  F O r  b A c k u p s  i n  t h e  u s e r  t r A c e

Figure 2 shows the simulated overheads for a variety of parameter settings. 
Storage overhead compares the storage required at the server for up to 12 
recent backup snapshots, averaged over the several months of the backup 
trace, against the minimum required (optimal backup). Network overhead 
is similar, but compares the average daily upload size against the optimal. 
The x-axis of each graph shows the results of varying the segment clean-
ing  aggressiveness: a cleaning threshold of 0.6 means that any segments less 
than 60% utilized will be expired and marked for cleaning. Cleaning thresh-
olds near zero indicate very little cleaning, and those near one indicate very 
aggressive segment cleaning. In addition, we consider the effect of aggrega-
tion by grouping data into segments from as small as 128KB to as large as 
16MB. 

Storage and upload overheads improve with decreasing segment size: smaller 
segments result in less wasted space in segments and less cleaning needed. 
As expected, increasing the cleaning threshold increases the network upload 
overhead: frequently rewriting segments requires more data to be uploaded. 
For very low cleaning thresholds, storage overhead grows due to wasted 
space in segments. When cleaning very aggressively, however, storage over-
head also grows: aggressive cleaning produces a high segment churn, which, 
when storing multiple snapshots, means there may be multiple copies of the 
same data. In between is a happy medium with relatively low storage over-
head. 

We can combine all these overheads into the single number that matters to 
an end user: monthly price. In this analysis, we use prices for Amazon S3 
(values are in US dollars): 

Storage:  $0.15 per GB·month ■■

Upload:  $0.10 per GB ■■

Segment:  $0.01 per 1000 files uploaded ■■

With this pricing model, the segment cost for uploading an empty file is 
equivalent to the upload cost for uploading approximately 100KB of data, 
i.e., when uploading 100KB files, half of the cost is for the bandwidth and 
half for the upload request itself. We would expect that segments somewhat 
larger than 100KB would achieve a minimum cost. 
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F i g u r e  3 :  c O s t s  ( u s $ )  F O r  b A c k u p s  F O r  t h e  u s e r  t r A c e  A s s u m -
i n g  A m A z O n  s 3  p r i c e s

Figure 3 shows the dollar costs from the Cumulus simulations. With per-
segment costs included, a very small segment size becomes more expensive. 
At a segment size of 0.5–1 MB and a cleaning threshold near 0.5, Cumulus 
achieves costs competitive with the optimal: within about 5% of optimal and 
only slightly over $0.50 per month. The majority (over 75%) of the monthly 
cost pays for storage, with upload bandwidth a minor component. Impor-
tantly, the overhead is not overly sensitive to the system parameters, so Cu-
mulus still provides good performance even if not tuned optimally. 

Prototype evaluation

System Storage Upload Operations 

Jungle Disk ≈ 2 GB 1.26 GB 30000 

$0.30 $0.126 $0.30 

Brackup 1.340 GB 0.760 GB 9027 

(default) $0.201 $0.076 $0.090 

Brackup 1.353 GB 0.713 GB 1403 

(aggregated) $0.203 $0.071 $0.014 

Cumulus 1.264 GB 0.465 GB 419 

$0.190 $0.047 $0.004 

t A b L e  1 :  c O s t  c O m p A r i s O n  F O r  b A c k u p s  b A s e d  O n  r e p L Ay i n g 
A c t u A L  F i L e  c h A n g e s  i n  t h e  u s e r  t r A c e  O V e r  A  t h r e e - m O n t h 
p e r i O d .  c O s t s  F O r  c u m u L u s  A r e  L O w e r  t h A n  t h O s e  F r O m  s i m u -
L A t i O n ,  i n  p A r t  b e c A u s e  s i m u L A t i O n  i g n O r e d  t h e  b e n e F i t s  O F 
c O m p r e s s i O n  A n d  s u b - F i L e  i n c r e m e n t A L s .  V A L u e s  A r e  L i s t e d  O n 
A  p e r - m O n t h  b A s i s .

Finally, we provide some results from running our Cumulus prototype and 
compare with two existing backup tools that also target Amazon S3: Jungle 
Disk and Brackup. We use the complete file contents from the user trace to 
accurately measure the behavior of our full Cumulus prototype and other 
real backup systems. We compute the average cost, per month, broken down 
into storage, upload bandwidth, and operation count (files created or modi-
fied). Each system keeps only the single most recent snapshot on each day. 

Cumulus cleans segments at less than 60% utilization on a weekly basis.  
We evaluate Brackup with two different settings. The first uses the option of 
merge_files_under=1kB to only aggregate files if they are under 1KB in size 
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(this setting is recommended). Since this setting still results in many small 
files (many of the small files are still larger than 1KB), a “high aggregation” 
run sets merge_files_under=16kB to capture most of the small files and fur-
ther reduce the operation count. Brackup includes the digest database in the 
files backed up, which serves a role similar to the database Cumulus stores 
locally. For fairness in the comparison, we subtract the size of the digest da-
tabase from the sizes reported for Brackup. 

Both Brackup and Cumulus use gpg to encrypt data in the test; gpg com-
presses the data with gzip prior to encryption. Encryption is enabled in Jun-
gle Disk, but no compression is available. 

In principle, we would expect backups with Jungle Disk to be near optimal 
in terms of storage and upload, since no space is wasted due to aggregation. 
But, as a tradeoff, Jungle Disk will have a much higher operation count. In 
practice, Jungle Disk experiences overhead from a lack of de-duplication, 
sub-file incrementals, and compression. 

Table 1 compares the estimated backup costs for Cumulus with Jungle Disk 
and Brackup. Several key points stand out in the comparison: 

Storage and upload requirements for Jungle Disk are larger, owing primar-■■

ily to the lack of compression. 
Except in the high aggregation case, both Brackup and Jungle Disk incur a ■■

large cost due to the many small files stored to S3. The per-file cost for up-
loads is larger than the per-byte cost, and for Jungle Disk significantly so. 
Brackup stores a complete copy of all file metadata with each snapshot, ■■

which in total accounts for 150–200 MB/month of the upload cost. The 
cost in Cumulus is lower, since Cumulus can store metadata changes as 
incrementals. 

The Cumulus prototype thus shows that a service with a simple storage in-
terface can achieve low overhead, and that Cumulus can achieve a lower 
total cost than other existing backup tools targeting S3. 

conclusions

The market for Internet-hosted backup service continues to grow. However, 
it remains unclear what form of this service will dominate. On one hand, it 
is in the natural interest of service providers to package backup as an inte-
grated service, since that will both create a “stickier” relationship with the 
customer and allow higher fees to be charged as a result. On the other hand, 
given our results, the customer’s interest may be maximized via an open mar-
ket for commodity storage services (such as S3) and the increasing competi-
tion due to the low barrier to switching providers, thus driving down prices. 

Cumulus source code is available at http://sysnet.ucsd.edu/projects/cumulus/. 
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