
; LO G I N : Au Gust 20 0 9 CuMu Lus : F I LEsystEM bACku P tO th E CLO u d 7

M i c h a e l V R a b l e , S t e F a n S a V a g e ,
a n d g e o F F R e y M . V o e l k e R

Cumulus:
filesystem backup
to the Cloud
Michael Vrable is pursuing a Ph.D. in com-
puter science at the University of California,
San Diego, and is advised by professors
Stefan Savage and Geoffrey Voelker. He
received an M.S. in computer science from
UCSD (2007) and a B.S. in mathematics and
computer science from Harvey Mudd College
(2004).

mvrable@cs.ucsd.edu

Stefan Savage is an associate professor of
computer science at the University of Cali-
fornia, San Diego. He has a B.S. in history and
reminds his colleagues of this fact anytime
the technical issues get too complicated.

savage@cs.ucsd.edu

Geoffrey M. Voelker is an associate professor
of computer science and engineering at the
University of California, San Diego. He works
in computer systems and networking.

voelker@cs.ucsd.edu

c u m u l u s I s a s y s t e m f o r e f f I c I e n t ly
implementing filesystem backups over the
Internet, taking advantage of the growing
availability of cheap storage options avail-
able online. Cloud service offerings such as
Amazon’s Simple Storage Service (S3), a part
of Amazon Web Services, offer cheap stor-
age at a fixed cost per gigabyte (no mini-
mums or maximums) and are appealing for
backup, since they provide an easy way to
safely store data off-site.

There are pre-packaged online services specifically
built for backup, such as Mozy and Carbonite. Cu-
mulus explores the other end of the design space:
building on top of a very generic cloud storage
layer, an example of what we refer to as building
on the “thin cloud.” Using a generic, minimalist in-
terface means that Cumulus is portable to virtually
any online storage service—the client implements
all application logic. Cumulus is not unique in this
approach, but compared with existing backup tools
targeting S3, Cumulus achieves lower costs, show-
ing that this limited interface is not an impediment
to achieving a very low and competitive cost for
backup.

related Tools

Unlike many traditional backup tools, Cumulus is
not designed to stream backup data to tape. Cumu-
lus instead takes advantage of the random access to
files provided by online storage services—though it
does still group writes together, since remote stor-
age operations have a cost.

Unlike tools such as rsync, rdiff-backup, and
boxbackup, no specialized code for Cumulus ex-
ecutes at the remote storage server. Cumulus can-
not rely on a customized network protocol or run
code at the server to manipulate snapshot data di-
rectly. However, like these systems, Cumulus does
still attempt to be network-efficient, sending only
changes to files over the network. If a user restores
data, the client is responsible for reconstructing
the snapshots from any deltas that were sent previ-
ously.

Other backup tools exist that target Amazon S3.
Jungle Disk is a general-purpose network filesys-
tem with S3 as the backing store; it can be used
to store backups but has higher overhead, since it
is optimized for random access to files. Brackup
is quite similar to Cumulus, though Cumulus in-

8 ; LO G I N : VO L . 3 4, N O. 4

cludes aggregation and cleaning mechanisms (described later) and can more
efficiently represent incremental changes. Duplicity represents incremental
backups very efficiently but cannot easily delete old snapshots. All of these
systems, like Cumulus, can encrypt data before it is stored at the remote
server.

Design

Cumulus stores backups on a remote server but, to be as portable as pos-
sible, imposes very few requirements on the server. Only four operations
are required: put/get for storing and retrieving files, list for identifying data
that is stored, and delete for reclaiming space. Cumulus does not depend
upon the ability to read or write subsets of a file, nor does it need (or even
use) support for reading and setting file attributes such as permissions and
timestamps. The interface is simple enough to be implemented on top of any
number of protocols: FTP, SFTP, WebDAV, Amazon’s S3, or nearly any net-
work file system.

Cumulus also adopts a write-once storage model: a file is never modified after
it is first stored, except to be deleted to recover space. The write-once model
provides convenient failure guarantees. Since files are never modified in
place, a failed backup run cannot corrupt old snapshots. At worst, a failure
will leave a partially written snapshot which can later be garbage-collected.
Cumulus can keep snapshots at multiple points in time simply by not delet-
ing the files that make up old snapshots.

F i g u r e 1 : s i m p L i F i e d s c h e m A t i c O F t h e b A s i c F O r m A t F O r s t O r -
i n g s n A p s h O t s O n A s t O r A g e s e r V e r . t w O s n A p s h O t s A r e
s h O w n , t A k e n O n s u c c e s s i V e d A y s . e A c h s n A p s h O t c O n t A i n s
t w O F i L e s . f i l e 1 c h A n g e s b e t w e e n t h e t w O s n A p s h O t s , b u t t h e
d A t A F O r f i l e 2 i s s h A r e d b e t w e e n t h e s n A p s h O t s . F O r s i m p L i c -
i t y i n t h i s F i g u r e , s e g m e n t s h A V e L e t t e r s A s n A m e s i n s t e A d
O F t h e 1 2 8 - b i t u u i d s u s e d i n p r A c t i c e .

The basic Cumulus snapshot format is illustrated in Figure 1. A snapshot
logically consists of two main parts. A metadata log lists all the files backed
up as well as ownership, modification times, and similar information. Cu-
mulus stores file data separately. Both data and metadata are broken apart

Segment A

Segment B

Segment Store

name: file1

owner: root

data: B/0

name: file2

owner: root

data: B/1 B/2

Date: 2008-01-01 12:00:00

Root: A/0

Segments: A B

Segment C

name: file1

owner: root

data: C/1

name: file2

owner: root

data: B/1 B/2

Date: 2008-01-02 12:00:00

Root: C/0

Segments: B C

Snapshot Descriptors

; LO G I N : Au Gust 20 0 9 CuMu Lus : F I LEsystEM bACku P tO th E CLO u d 9

into smaller blocks, and a backup is structured as a tree (or sometimes a di-
rected acyclic graph)—the block at the start of the metadata log contains
pointers to other portions of the metadata log, which eventually contains
pointers to data blocks for files. Cumulus stores metadata in textual, not bi-
nary, format. A snapshot descriptor points to the root of each backup snap-
shot.

Where duplicate data exists there may be multiple pointers to the same data
blocks, making backups more space-efficient. Successive backup snapshots
look something like the snapshots in a copy-on-write filesystem: multiple
backup roots exist, but, when unchanged, data and metadata blocks are
shared between the snapshots.

Aggregation and cleaning

Backups in Cumulus would be straightforward if each backup were sim-
ply stored as a collection of blocks as described. However, these blocks will
often be fairly small and, for many storage back ends, there is a penalty for
storing large numbers of small files. For example, in addition to per-byte up-
load costs, Amazon S3 charges a small amount for each put operation.

To reduce costs, Cumulus aggregates blocks before sending them to a stor-
age server. The example in Figure 1 illustrates this. We say that blocks are
aggregated into segments, and Cumulus stores each segment as a separate file
on the remote storage server. Each segment is internally structured as a tar
file (so standard UNIX tools can unpack it), and segments may be filtered
through a compression program (such as gzip) or encrypted (with gpg) be-
fore being sent over the network. Each segment has a unique name; we use
a randomly generated 128-bit UUID so that segment names can be assigned
without central coordination. Blocks are numbered sequentially within a
segment.

Aggregation of data into segments can decrease costs but brings added com-
plexity. When old snapshots are no longer needed, Cumulus reclaims space
by garbage-collecting unused segments. It may be, however, that some seg-
ments only contain a small fraction of useful data. The remainder of these
segments—data used only by deleted snapshots—is now wasted space. This
problem is similar to the problem of reclaiming space in the Log-Structured
File System (LFS) [1].

To reclaim space, Cumulus includes a segment cleaner that operates in two
steps. First, it identifies segments which contain very little data and marks
them as expired. Then, on the following backup run, Cumulus re-uploads
(in new segments) any data that is still needed from the expired segments.
Segment cleaning never requires downloading old segments. Cleaning can-
not immediately delete expired segments when old snapshots still refer to
them, but Cumulus can free them as the older snapshots are deleted.

Implementation

Our prototype Cumulus implementation is relatively compact: only slightly
over 3,200 lines of C++ source code implementing the core backup func-
tionality, along with another roughly 1,000 lines of Python for tasks such as
restores, segment cleaning, and statistics gathering.

Each client stores on its local disk information about recent backups, pri-
marily so that it can detect which files have changed and properly reuse
blocks from previous snapshots. We do not need this information to recover

10 ; LO G I N : VO L . 3 4, N O. 4

data from a backup so its loss is not catastrophic, but this local state does
enable various performance optimizations during backups.

To simplify the implementation and keep Cumulus flexible, we implement
several tasks as external scripts. Helper scripts filter data to perform com-
pression and encryption. External scripts also handle file transfers—local
storage and transfers to Amazon S3 are supported, but adding additional
storage back-ends is straightforward.

Some files, such as log files or database files, may only be partly changed be-
tween backup runs. Our Cumulus implementation can efficiently represent
these partial changes to files: the metadata log entry for a file can refer to a
mixture of old and new blocks, or even parts of blocks. Cumulus computes
these sub-file incrementals in a manner similar to that used in the Low-
Bandwidth File System [2]: it divides data into variable-sized chunks of ap-
proximately 4KB, and it detects duplicate data between different versions of
a file at a chunk granularity.

We implemented the restore functionality in Python. To reduce disk space
requirements, the restore tool downloads segments as needed during the re-
store instead of all at once at the start. When restoring selected files from a
snapshot, it downloads only the necessary segments. Cumulus also includes
a FUSE interface that allows a collection of backup snapshots to be mounted
as a virtual filesystem on Linux, thereby providing random access with stan-
dard filesystem tools.

evaluation

We use both trace-based simulation and a prototype implementation to eval-
uate the use of thin cloud services for remote backup. To drive our evalu-
ation of Cumulus we replay a set of backups (taken with earlier versions
of Cumulus) from a personal computer. These snapshots cover a period of
over seven months and include an average of 2.4GB of data in each snap-
shot, with 40MB of data created or modified each day. In the FAST con-
ference paper [3] we also consider traces taken from a research group file
server. However, the end-user scenario is both more demanding (in terms
of overhead within Cumulus) and likely more similar to expected uses for
 Cumulus.

Backup simulations

Most of the overhead introduced by Cumulus is due to aggregation of data
into segments and the associated cleaning costs. To better understand how
this overhead depends on the details of aggregation and cleaning, we con-
sider different scenarios in simulation using trace data, which allows us to
explore the many possible parameter settings quickly.

The simulator tracks three overheads associated with performing backups,
corresponding to the three quantities for which online services typically
charge: daily storage requirements, network uploads, and an operation count
(number of segments uploaded). The simulator makes several simplifica-
tions—it ignores file compression, sub-file incrementals, and file metadata
overhead—but the prototype evaluation includes these.

In this simplified setting we compare Cumulus against an idealized opti-
mal backup in which no space is wasted due to aggregation. In the optimal
backup, each unique piece of data is transferred over the network and stored
only once.

; LO G I N : Au Gust 20 0 9 CuMu Lus : F I LEsystEM bACku P tO th E CLO u d 11

F i g u r e 2 : O V e r h e A d s F O r b A c k u p s i n t h e u s e r t r A c e

Figure 2 shows the simulated overheads for a variety of parameter settings.
Storage overhead compares the storage required at the server for up to 12
recent backup snapshots, averaged over the several months of the backup
trace, against the minimum required (optimal backup). Network overhead
is similar, but compares the average daily upload size against the optimal.
The x-axis of each graph shows the results of varying the segment clean-
ing aggressiveness: a cleaning threshold of 0.6 means that any segments less
than 60% utilized will be expired and marked for cleaning. Cleaning thresh-
olds near zero indicate very little cleaning, and those near one indicate very
aggressive segment cleaning. In addition, we consider the effect of aggrega-
tion by grouping data into segments from as small as 128KB to as large as
16MB.

Storage and upload overheads improve with decreasing segment size: smaller
segments result in less wasted space in segments and less cleaning needed.
As expected, increasing the cleaning threshold increases the network upload
overhead: frequently rewriting segments requires more data to be uploaded.
For very low cleaning thresholds, storage overhead grows due to wasted
space in segments. When cleaning very aggressively, however, storage over-
head also grows: aggressive cleaning produces a high segment churn, which,
when storing multiple snapshots, means there may be multiple copies of the
same data. In between is a happy medium with relatively low storage over-
head.

We can combine all these overheads into the single number that matters to
an end user: monthly price. In this analysis, we use prices for Amazon S3
(values are in US dollars):

Storage: $0.15 per GB·month ■■

Upload: $0.10 per GB ■■

Segment: $0.01 per 1000 files uploaded ■■

With this pricing model, the segment cost for uploading an empty file is
equivalent to the upload cost for uploading approximately 100KB of data,
i.e., when uploading 100KB files, half of the cost is for the bandwidth and
half for the upload request itself. We would expect that segments somewhat
larger than 100KB would achieve a minimum cost.

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

O
v
e
rh

e
a
d
 v

s
.

O
p
ti
m

a
l
(%

)

R
a
w

 S
iz

e
 (

G
B

)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 KB Segments
128 KB Segments

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1
 38

 40

 42

 44

 46

 48

 50

 52

O
v
e
rh

e
a
d
 v

s
.

O
p
ti
m

a
l
(%

)

R
a
w

 S
iz

e
 (

M
B

/d
a
y
)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 KB Segments
128 KB Segments

A. Average daily storage B. Average daily upload

12 ; LO G I N : VO L . 3 4 , N O. 4

F i g u r e 3 : c O s t s (u s $) F O r b A c k u p s F O r t h e u s e r t r A c e A s s u m -
i n g A m A z O n s 3 p r i c e s

Figure 3 shows the dollar costs from the Cumulus simulations. With per-
segment costs included, a very small segment size becomes more expensive.
At a segment size of 0.5–1 MB and a cleaning threshold near 0.5, Cumulus
achieves costs competitive with the optimal: within about 5% of optimal and
only slightly over $0.50 per month. The majority (over 75%) of the monthly
cost pays for storage, with upload bandwidth a minor component. Impor-
tantly, the overhead is not overly sensitive to the system parameters, so Cu-
mulus still provides good performance even if not tuned optimally.

Prototype evaluation

System Storage Upload Operations

Jungle Disk ≈ 2 GB 1.26 GB 30000

$0.30 $0.126 $0.30

Brackup 1.340 GB 0.760 GB 9027

(default) $0.201 $0.076 $0.090

Brackup 1.353 GB 0.713 GB 1403

(aggregated) $0.203 $0.071 $0.014

Cumulus 1.264 GB 0.465 GB 419

$0.190 $0.047 $0.004

t A b L e 1 : c O s t c O m p A r i s O n F O r b A c k u p s b A s e d O n r e p L Ay i n g
A c t u A L F i L e c h A n g e s i n t h e u s e r t r A c e O V e r A t h r e e - m O n t h
p e r i O d . c O s t s F O r c u m u L u s A r e L O w e r t h A n t h O s e F r O m s i m u -
L A t i O n , i n p A r t b e c A u s e s i m u L A t i O n i g n O r e d t h e b e n e F i t s O F
c O m p r e s s i O n A n d s u b - F i L e i n c r e m e n t A L s . V A L u e s A r e L i s t e d O n
A p e r - m O n t h b A s i s .

Finally, we provide some results from running our Cumulus prototype and
compare with two existing backup tools that also target Amazon S3: Jungle
Disk and Brackup. We use the complete file contents from the user trace to
accurately measure the behavior of our full Cumulus prototype and other
real backup systems. We compute the average cost, per month, broken down
into storage, upload bandwidth, and operation count (files created or modi-
fied). Each system keeps only the single most recent snapshot on each day.

Cumulus cleans segments at less than 60% utilization on a weekly basis.
We evaluate Brackup with two different settings. The first uses the option of
merge_files_under=1kB to only aggregate files if they are under 1KB in size

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

 0.55

 0.6

 0.65

 0.7

 0.75

C
o

s
t
In

c
re

a
s
e

 v
s
.
O

p
ti
m

a
l
(%

)

C
o

s
t
($

)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 KB Segments
128 KB Segments

; LO G I N : Au Gust 20 0 9 CuMu Lus : F I LEsystEM bACku P tO th E CLO u d 13

(this setting is recommended). Since this setting still results in many small
files (many of the small files are still larger than 1KB), a “high aggregation”
run sets merge_files_under=16kB to capture most of the small files and fur-
ther reduce the operation count. Brackup includes the digest database in the
files backed up, which serves a role similar to the database Cumulus stores
locally. For fairness in the comparison, we subtract the size of the digest da-
tabase from the sizes reported for Brackup.

Both Brackup and Cumulus use gpg to encrypt data in the test; gpg com-
presses the data with gzip prior to encryption. Encryption is enabled in Jun-
gle Disk, but no compression is available.

In principle, we would expect backups with Jungle Disk to be near optimal
in terms of storage and upload, since no space is wasted due to aggregation.
But, as a tradeoff, Jungle Disk will have a much higher operation count. In
practice, Jungle Disk experiences overhead from a lack of de-duplication,
sub-file incrementals, and compression.

Table 1 compares the estimated backup costs for Cumulus with Jungle Disk
and Brackup. Several key points stand out in the comparison:

Storage and upload requirements for Jungle Disk are larger, owing primar-■■

ily to the lack of compression.
Except in the high aggregation case, both Brackup and Jungle Disk incur a ■■

large cost due to the many small files stored to S3. The per-file cost for up-
loads is larger than the per-byte cost, and for Jungle Disk significantly so.
Brackup stores a complete copy of all file metadata with each snapshot, ■■

which in total accounts for 150–200 MB/month of the upload cost. The
cost in Cumulus is lower, since Cumulus can store metadata changes as
incrementals.

The Cumulus prototype thus shows that a service with a simple storage in-
terface can achieve low overhead, and that Cumulus can achieve a lower
total cost than other existing backup tools targeting S3.

conclusions

The market for Internet-hosted backup service continues to grow. However,
it remains unclear what form of this service will dominate. On one hand, it
is in the natural interest of service providers to package backup as an inte-
grated service, since that will both create a “stickier” relationship with the
customer and allow higher fees to be charged as a result. On the other hand,
given our results, the customer’s interest may be maximized via an open mar-
ket for commodity storage services (such as S3) and the increasing competi-
tion due to the low barrier to switching providers, thus driving down prices.

Cumulus source code is available at http://sysnet.ucsd.edu/projects/cumulus/.

references

[1] Mendel Rosenblum and John K. Ousterhout, “The Design and Implemen-
tation of a Log-Structured File System,” ACM Transactions on Computer Sys-
tems 10(1):26–52, 1992.

[2] Athicha Muthitacharoen, Benjie Chen, and David Mazières, “A Low-
Bandwidth Network File System,” Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP) (ACM, 2001), pp. 174–187.

[3] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker, “Cumulus: File-
System Backup to the Cloud,” Proceedings of the 7th USENIX Conference on
File and Storage Technologies (FAST ’09) (USENIX Association, 2009), pp.
225–238.

