
12 ; LO G I N :  vO L .  3 4,  N O.  3   

R a g i b  h a s a n ,  R a d u  s i o n ,  a n d  
M a R i a n n e  w i n s l e t t

secure provenance: 
protecting the 
 genealogy of bits 
Ragib Hasan is a PhD candidate in the Department 
of Computer Science at the University of Illinois at 
Urbana-Champaign. His research interests include 
secure provenance, regulatory compliant storage 
systems/databases, and other aspects of storage 
security.

rhasan@cs.uiuc.edu

Radu Sion is an assistant professor in the Depart-
ment of Computer Science at Stony Brook Uni-
versity. His research interests span information 
assurance, practical cryptography, and large data 
and compute-intensive systems.

sion@cs.stonybrook.edu

Marianne Winslett is a research professor in the 
Department of Computer Science at the University 
of Illinois at Urbana-Champaign. Her research inter-
ests lie in information security and in the manage-
ment of scientific data. She is an ACM Fellow, a 
former vice-chair of ACM SIGMOD, and recipient of 
the Presidential Young Investigator Award from NSF.

winslett@cs.uiuc.edu

T h e  A b I l I T y  T o  T r A c k  T h e  o r I g I n  o f 
information is essential in science, medi-
cine, commerce, and government. Applica-
tions such as digital rights protection, DNA 
testing, drug trials, corporate financial 
accounting, and national intelligence need 
to guarantee the integrity and authenticity 
of information as it flows between people 
and tasks. In this article, we describe what 
digital provenance means and how to pro-
vide strong integrity and confidentiality as-
surances for data provenance information. 
We present our provenance-aware system 
prototype that implements provenance 
tracking of data writes at the application 
layer, which makes it extremely easy to 
deploy. The prototype is efficient: for typi-
cal real-life workloads, its runtime overhead 
does not exceed 13% and is below 3% for 
most workloads. 

Provenance

In 2006, the Picasso painting Dora Maar au Chat 
(Dora Maar with Cat) was auctioned at Sotheby’s 
for US $95 million, becoming one of the most ex-
pensive paintings in the world. At the same time, 
someone listed several paintings for sale on eBay, 
supposedly complete with Picasso’s signature. Al-
though eBay quickly removed those listings, many 
purported Picassos are still on the market. 

How do art buyers authenticate paintings? Many 
factors play a role, but one key element is prove-
nance records that list the ownership history of an 
item and the actions performed on it. Provenance 
is widely used in the arts, archaeology, science, ge-
nealogy, and data archives, where it has been called 
the fundamental principle of archiving. 

Provenance has traditionally been used to authen-
ticate physical objects, but life today has become 
increasingly dependent on digital information that 
originated elsewhere, was processed by other peo-
ple, and was stored in potentially untrustworthy 
storage. In such situations, it is increasingly impor-
tant to know where the information comes from 
and how it has been processed and handled. In 
other words, to be able to trust a piece of informa-
tion, we need to know its provenance. 



; LO G I N :  J u N e 20 0 9 seCu Re PROv e N A N Ce :  PROTeC TI N G Th e G e N e A LO G y O F b IT s 13

Provenance is a highly overloaded term, but all definitions share the same 
core concepts: data provenance is a description of the origins, lineage, deri-
vation, and transmission history of a digital object. Until now, scientists 
have been the primary users of data provenance systems, and provenance 
research has mainly focused on the tasks of modeling, representation, col-
lection, annotation, and querying. 

However, as provenance steps into mainstream computing, new challenges 
arise. With its increased use in financial, medical, and other non-scientific 
application areas, provenance information faces a host of security threats, in-
cluding active attacks from adversaries. In high-stakes business and medical 
applications, insiders may have significant incentives to alter data records’ 
history. For example, in big finance, regulatory and legal considerations 
mandate provenance assurances, and the US Sarbanes-Oxley Act sets prison 
terms for officers of companies that issue incorrect financial statements. As 
a result, officers have become very interested in tracking and securing the 
path that a financial report takes during its development, including both 
input data origins and authors. The US Gramm-Leach-Bliley Act, Securities 
and Exchange Commission rule 17a, and HIPAA also require documentation 
and audit trails for financial or medical records. 

f i g u r e  1 :  e x a m P L e  s c e n a r i O .  d a n a  g O e s  t O  d r .  a L i c e ,  w h O 
r e f e r s  h e r  t O  d r .  b O b  f O r  a  t e s t,  a n d  t h e  t e s t  r e s u Lt s  a r e 
t h e n  P r O c e s s e d  b y  d r .  c h a r L i e .  b e c a u s e  O f  a  m i s d i a g n O s i s  b y 
d r .  b O b ,  d a n a  s u f f e r s  h e a Lt h  P r O b L e m s  a n d  s u e s  d r .  c h a r L i e , 
w h O  w a n t s  t O  u s e  t h e  P r O V e n a n c e  ( P a L i c e | P b O b | P c h a r L i e )  O f 
d a n a’ s  m e d i c a L  r e c O r d s  t O  P r O V e  h i s  i n n O c e n c e .  d r .  b O b 
w a n t s  t O  h i d e  h i s  a c t i O n s  b y  r e t r O a c t i V e Ly  a Lt e r i n g  h i s 
e n t r i e s  i n  d a n a’ s  m e d i c a L  r e c O r d s  a n d  t a m P e r i n g  w i t h  t h e 
P r O V e n a n c e  r e c O r d  O f  h i s  d i a g n O s i s  ( P b O b )  t O  m a t c h . 

When information crosses application and organizational boundaries and 
passes through untrusted environments, its associated provenance infor-
mation is vulnerable to illicit alteration. For example, in Figure 1, Dr. Bob, 
wanting to hide evidence of his misdiagnosis, retroactively changes the diag-
nosis in his patient’s record and tampers with the associated provenance re-
cord. Access control is insufficient to prevent this tampering, as Dr. Bob may 
have physical control over a machine where the information resides. Thus, 
the trustworthiness of the provenance records themselves is in question: we 
need provenance of provenance, i.e., a model for secure provenance. 

Making provenance records trustworthy is challenging. Ideally, we need to 
guarantee completeness—all relevant actions pertaining to a piece of infor-
mation are captured; integrity—adversaries cannot forge or alter provenance 

 

  









14 ; LO G I N :  vO L .  3 4 ,  N O.  3

records; availability—auditors can verify the integrity of provenance infor-
mation; confidentiality—only authorized parties can read provenance re-
cords; and efficiency—provenance mechanisms should have low overheads. 

Here, we take the first step towards preventing forgery of history as stored 
in provenance records. We present a scheme for providing integrity and 
confidentiality assurances for provenance records, and we describe a proof-
of-concept implementation for file systems that imposes only 1% to 13% 
overhead for typical real-life workloads. 

A Model for Provenance

In what follows we use the term document to refer to the data item for which 
provenance information is collected, such as a file, database tuple, or net-
work packet. At the IT layer, the provenance of a document is the record of 
actions taken on that document over its lifetime. Each access to a document 
D may generate a provenance record P. The types of access that should gener-
ate a provenance record depend on the domain, as do the exact contents of 
the record, but in general P may include the identity of the accessing prin-
cipal; a log of the access actions (e.g., read, write) and their associated data 
(e.g., the bytes of the document or its metadata that were read/written); a 
description of the environment at the time of the action, such as the time of 
day and the software environment; and confidentiality- and integrity-related 
components, such as cryptographic signatures, checksums, and keying ma-
terial. A provenance chain for document D is a non-empty time-ordered se-
quence of provenance records P1 | ··· | Pn.

In a given security domain (organization), users are principals who read and 
write documents and their metadata. Each organization has one or more 
auditors, who are principals authorized to access and verify the integrity of 
provenance records associated with documents. Documents move from one 
user to another, as email attachments, FTP transfers, or by other means. 
Provenance chains move with the documents. When a user modifies a docu-
ment, a new provenance record describing the modifications is appended 
to the provenance chain and the user permits some subset of the auditors 
to read the new record. Adversaries are principals from inside or outside an 
organization who have access to a document and its provenance chain and 
who want to alter them inappropriately, as discussed below. 

We cannot track provenance perfectly, because a provenance tracking sys-
tem implemented at a particular level of the system is oblivious to attacks 
that take place outside the view of that level. For example, suppose that we 
implement provenance tracking in the OS kernel. If the kernel is not run-
ning on hardware that offers special security guarantees, an intruder can 
take over the machine, subvert the kernel, and circumvent the provenance 
system. Even with a trusted pervasive hardware infrastructure and prov-
enance tracking at every level of the system, a malicious user who can read 
a document can always memorize and replicate portions of it later, minus 
the appropriate provenance information. Since we cannot fully monitor the 
information flow channels available to attackers, our power to track the ori-
gin of data by monitoring read operations is limited. Given a guarantee that 
users could never circumvent the provenance mechanisms, we could reliably 
track all information flows by recording all information that each user reads, 
in addition to what they write. However, promulgation of provenance for 
read operations can result in a combinatorial explosion in overhead that can 
make the system unusable [16]. In this work, we target applications that do 
not require tracking of reads. 



; LO G I N :  J u N e 20 0 9 seCu Re PROv e N A N Ce :  PROTeC TI N G Th e G e N e A LO G y O F b IT s 15

Consider the version history that would result if a document were created 
and subsequently edited and transferred from user to user, with provenance 
information correctly and indelibly recorded all along the way. We call this a 
plausible history for the resulting document and its chain. We target applica-
tions whose provenance integrity needs are met by the following guarantee: 
if a provenance chain does not give a plausible history for its associated document, 
we will detect this. Such applications are common. For example, a retail phar-
macy will not accept a shipment of drugs unless it can be shown that the 
drugs have passed through the hands of certain middlemen. If a criminal 
wants to sell drugs manufactured by an unlicensed company, he will want 
to forge a provenance chain that gives the drugs a more respectable history, 
so that he can move them into the supply chain. Our approach detects that 
the new chain is forged. The criminal will not want to take drugs manufac-
tured and distributed through legitimate channels, strip off their distribution 
provenance records, and replace them by a record showing that he distrib-
uted the drugs himself, as this new plausible history for the drugs makes 
them worthless. Similarly, there is little danger that someone will remove the 
provenance chain associated with a box of Prada accessories and try to pass 
them off as another brand. Instead, the incentive is to pass off non-Prada ac-
cessories as Prada, and we detect this attack. 

More precisely, suppose that we have a provenance chain ([A], [B], [C], [D], 
[E], [F]), in which, for simplicity, each record is denoted by the identity of 
its corresponding principal A, . . . ,F. We provide the following integrity and 
confidentiality assurances with respect to forgery of document history. 

I1: An adversary acting alone cannot selectively remove other principals’ 
records from the beginning or middle of a provenance chain without being 
detected at the next audit. 
I2: An adversary acting alone cannot add records in the beginning or the 
middle of the chain without being detected at the next audit. 
I3: Two colluding adversaries who have contributed records to a prov-
enance chain cannot add records of other non-colluding users between 
theirs without being detected by the next audit. 

For example, colluding users B and D cannot undetectably add records be-
tween their own, corresponding to fabricated actions by a non-colluding 
party E. 

I4: Once the chain contains subsequent records by non-colluding parties, 
two colluding adversaries who have contributed records to a provenance 
chain cannot remove the record of any non-colluding user between theirs 
without being detected by the next audit. 

For example, colluding users B and D cannot remove records made by non-
colluding user C. 

A user Gertrude who can read the last record in a chain can recreate the 
previous version of the document by removing that record and undoing its 
writes to the document. Thus Gertrude and her colleagues can roll back his-
tory, then edit the old version as desired, adding new provenance records 
that match their actions and thereby constructing a new plausible history. 
However, constraint I4 prevents Gertrude from attributing any of the new 
writes to those who are not collaborating with her. For example, suppose 
Gertrude undoes records F and E, where F is a stamp of approval from the 
Food and Drug Administration. Her collaborator E then alters the old ver-
sion of the document, generating a new provenance record E'. If they then 
try to reaffix the old FDA stamp of approval F without the FDA’s help and 
cooperation, that forgery will be detected by the next audit, as the resulting 
provenance chain does not correspond to any plausible history. 



16 ; LO G I N :  vO L .  3 4,  N O.  3

I5: Users cannot repudiate chain records. 
I6: An adversary cannot claim that a valid provenance chain for one docu-
ment belongs to a document with different contents, without detection by 
the next audit. 
I7: If an adversary alters a document without appending the appropriate 
provenance record to its chain, this will be detected by the next audit. 
C1: Any auditor can verify the integrity of the chain without requiring ac-
cess to any of its confidential components. Unauthorized access to confi-
dential provenance record fields is prevented. 
C2: The set of parties originally authorized to read the contents of a par-
ticular provenance record for D can be further restricted by subsequent 
writers of D. 

A Secure Provenance Scheme

We proposed a solution composed of several layered components: encryp-
tion for sensitive provenance record fields, a checksum-based approach to 
ensure provenance record integrity, and an incremental chained signature 
mechanism for securing the integrity of the chain as a whole. For confiden-
tiality, we deployed a special keying scheme based on broadcast encryption 
key management to selectively regulate the access for different auditors. To 
provide fine-grained confidentiality, we used a cryptographic commitment-
based construction. 

f i g u r e  2 :  s t r u c t u r e  O f  a  P r O V e n a n c e  c h a i n ,  s h O w i n g  a 
P r O V e n a n c e  r e c O r d  a n d  t h e  f i e L d s  O f  i t s  u s e r  i d e n t i t y 
c O m P O n e n t .

More precisely, each provenance record Pi summarizes a sequence of one or 
more actions taken by a user: 

Pi  = <Ui, Wi, hash(D), Ki, Ci, [publici]>

where 

U■■ i is a plaintext identifier for the user; 
W■■ i is an encrypted or plaintext representation of the sequence of actions 
(the modification log) performed by the user; 
hash(D)■■  is a one-way hash of the current content of the document; 
K■■ i contains keying material that auditors can use to decrypt the encrypted 
fields, as explained below; 
C■■ i contains an integrity checksum (defined below) for this provenance 
record, signed by user Ui; 
public■■ i is an optional encrypted or plaintext public key certificate for user 
Ui. 

     

    




    

    











; LO G I N :  J u N e 20 0 9 seCu Re PROv e N A N Ce :  PROTeC TI N G Th e G e N e A LO G y O F b IT s 17

As a practical matter, at the start of an editing session the provenance sys-
tem should verify that the current contents of D match its hash value stored 
in the most recent provenance record. We discuss each of the record’s fields 
below. 

cOnfIdenTIALITy

Certain fields or subfields of a provenance record may be sensitive, such as 
the identity or individual steps of a proprietary process used to clean experi-
mental data. If all users trusted all auditors, then providing confidentiality 
for these sensitive fields would be straightforward—we could just encrypt 
all of them with a single public key, and give the private key to the auditors. 
If a user trusted only certain auditors, we could make several copies of the 
sensitive fields, encrypt each copy with the public key of a different trusted 
auditor, and include all of them in the new provenance record. While secure, 
this wastes space. Instead, as shown in Figure 3(a), we encrypt the sensitive 
fields of a record once with a new secret key, make multiple copies of the 
secret key, and encrypt each copy with the public key of a different trusted 
auditor. In this scheme, the new provenance record contains the encrypted 
sensitive fields plus several versions of the encrypted secret key, stored in 
the Ki field of the record. A trusted auditor can subsequently read the re-
cord, decrypt a copy of the secret key using the auditor’s private key, and 
use the secret key to decrypt the sensitive fields. If there are many auditors, 
the record can be kept small by using a broadcast encryption tree to reduce 
the number of encrypted copies of the secret key. Other concerns such as 
separation of duty, or requiring a minimum number of auditors to cooperate 
when decrypting a secret key, can be addressed by using secret sharing and 
threshold encryption. 

InTeGrITy

An audit must detect whether adversaries have removed or inserted elements 
from the chain and whether a chain has been switched from one docu-
ment to another. To achieve this, the checksum Ci of a provenance record Pi 
is computed as shown in Figure 3(b). First we apply a cryptographic hash 
function to the tuple containing the user identity Ui, the hash of the docu-
ment contents hash(D), the modification log Wi, the key-related information 
K, and (if included in the record) the user’s public key publici. Then we con-
catenate the resulting hash with the checksum Ci–1 of the previous prov-
enance record Pi–1, sign the result with the user’s private key, and store the 
signed result in the provenance record. More formally, the integrity check-
sum field Ci is: 

Ci = Sprivatei
 (hash(Ui, Wi, hash(D), Ki, [publici])|Ci-1)

where Sprivatei
 means that user Ui signs the hash with his or her private key. 

To verify chain integrity, the auditor starts from the first record of the chain. 
The auditor extracts the user identity U1 from the record and obtains public1 
from an external trusted source, or obtains public1 from the record itself and 
uses an external trusted source to verify that public1 is the public key of user 
U1. The auditor uses the W1 field (whether encrypted or plaintext), plus the 
U1, K1, hash(D), and optional public1 fields to generate a checksum C for the 
record. The auditor then uses public1 to check that the signed checksum C1 
is in fact what would be produced by U1 signing C. The auditor then moves 
on to the next record, remembering to include the signed checksum for the 
previous record in the computation of the checksum for the current record. 
Once the integrity of the chain is established, the auditor hashes the docu-



18 ; LO G I N :  vO L .  3 4,  N O.  3

ment D and verifies that the resulting hash value was stored in the last prov-
enance record. 

( a )       ( b )

f i g u r e  3 :  ( a )  c O n f i d e n t i a L i t y.  w i  i s  t h e  m O d i f i c a t i O n  L O g ,  k i 
i s  a  s e c r e t  k e y  t h a t  a u t h O r i z e d  a u d i t O r s  c a n  r e t r i e V e  f r O m 
t h e  f i e L d  k i ,  k a  i s  t h e  k e y  O f  a  t r u s t e d  a u d i t O r .  ( b )  i n t e g r i t y. 
n e w  c h e c k s u m  c i  i s  a  f u n c t i O n  O f  t h e  c u r r e n t  d O c u m e n t, 
n e w  P r O V e n a n c e  r e c O r d ,  a n d  t h e  P r e V i O u s  c h e c k s u m  c i - 1 .

fine-Grained control Over confidentiality

Some portions of a provenance record may be quite sensitive. For example, 
suppose that because of a Freedom of Information Act request, a document 
containing sensitive information has to be released to the public. Usually 
this is done by redacting the sensitive content of the document. However, 
the provenance chain for the redacted document will also contain bits and 
pieces of the sensitive information here and there. We cannot simply remove 
every record containing sensitive information, as that will break provenance 
integrity checks. Encrypting the entire modification log just to hide a small 
piece of sensitive information is excessive. 

To allow selective disclosure in cases like this, we replace each sensitive field 
(or sub-field) in the record by a cryptographic commitment for it, e.g., by ap-
pending a random number to the contents of the field and then hashing the 
result. We encrypt those random numbers with a secret key and leave them 
in the record for trusted auditors to use. When we compute the checksum, 
we use the commitments in place of the sensitive fields, and include the en-
crypted random numbers. The official provenance record includes the sen-
sitive and non-sensitive fields, the commitments for the sensitive fields, the 
encrypted random numbers, and the checksum. When we release the prov-
enance chain we can remove the sensitive fields, and subsequent integrity 
checks for the chain and document will still work correctly.

SuMMArIzInG cHAInS

As the document is modified over time, the provenance chain can eventually 
become much larger than the document. System administrators may want to 
summarize a provenance chain by omitting all but the records correspond-
ing to “important” actions. The original chain construction scheme does not 
allow summarization through removal of records. However, we can augment 
the chain by including additional independently computed checksums in 
each record. Each checksum is computed by taking the checksum of a pre-

     

      

  
    

 













 

   







; LO G I N :  J u N e 20 0 9 seCu Re PROv e N A N Ce :  PROTeC TI N G Th e G e N e A LO G y O F b IT s 19

vious record, combining it with the hash of the current record, and then 
signing it. For example, one checksum may connect the current record to 
the previous record, while another may connect it with the record two hops 
away in the chain. The additional checksums allow us to remove records 
and still be able to prove the integrity and chronological ordering of the re-
maining records.

AcTIOnS recOrded In cHAInS

In our work, we recorded writes of document data and metadata in prov-
enance records, as well as movements of a document across organizational 
boundaries. We do not record reads. When the document is deleted, the 
provenance chain may be retained for an application-appropriate period. 

Implementation and empirical evaluation

f i g u r e  4 :  O V e r h e a d  O f  s e c u r e  P r O V e n a n c e  w i t h  P O s t m a r k . 
t h e  O V e r h e a d s  a r e  s h O w n  f r O m  0 %  r e a d  b i a s  ( 1 0 0 %  w r i t e 
t r a n s a c t i O n s )  t O  1 0 0 %  r e a d  b i a s  ( n O  w r i t e  t r a n s a c t i O n s ) , 
w i t h  O r  w i t h O u t  a  r a m  d i s k .

 We designed and built a proof-of-concept prototype that provides secure 
provenance for files. The key design decision was where to place the prov-
enance functionality. A kernel-layer or file-system-layer implementation 
makes provenance collection transparent to applications, but requires every 
user platform to run a modified kernel or file system, which hampers porta-
bility. A user-level implementation increases portability while still allowing a 
high degree of transparency. Thus we designed and implemented support for 
secure provenance through an application-layer C library called SPROV, con-
sisting of wrapper functions for the standard file I/O library stdio.h. 

Our experimental testbed for SPROV was a workstation with an Intel Pen-
tium 4 CPU at 3.4GHz, 2GB RAM, running Linux (Suse) at kernel version 
2.6.11. In this configuration, each 1024-bit DSA signature took 1.5ms to 
compute. We used two modes for storing provenance chains—in the Config-
Disk mode, the chains were stored on the disk, while in the Config-RD mode, 
we buffered the chains in a RAM disk and periodically flushed them to disk 
using a daemon. 

We evaluated the overhead of SPROV using the standard Postmark bench-
mark for small files and workloads modeled on real-world traces. We ran 






























          

















20 ; LO G I N :  vO L .  3 4,  N O.  3

Postmark with secure provenance and without any provenance, and mea-
sured the runtime overhead. Modifying Postmark to use secure provenance 
required changing only 8 lines of code. A data set containing 20,000 Post-
mark-generated binary files with sizes from 8KB to 64KB was subjected 
to Postmark workloads of 20,000 transactions. Each transaction opened a 
file, issued a read or a write of size between 8KB and 64KB, then closed the 
file. We measured the performance overhead under different write loads by 
varying the percentage of write transactions from 0% to 100%, in 10% in-
crements. As shown in Figure 4, the overheads start at 0.5% for both Config-
Disk and Config-RD, ranging up to 11% for Config-RD. 

( a )

( b )

f i g u r e  5 :  e f f e c t  O f  d i f f e r e n t  w O r k L O a d s .  ( a )  t h e  c O n f i g - d i s k 
s e t t i n g .  ( b )  t h e  c O n f i g - r d  s e t t i n g .

Next we considered a more realistic scenario involving practical, docu-
mented workloads and file system layouts. We constructed a layout in the 
manner of Douceur and Bolosky [7], who showed that file sizes can be mod-
eled using a log-normal distribution. We used the parameters me=8.46, 
se=2.4 to generate a distribution of 20,000 files, with a median file size of 
4KB and a mean file size of 80KB. To that we added a small number of files 
with sizes exceeding 1GB, to account for large data objects [7]. 

We set the percentage of write and read transactions to match five studies 
of real-world file system workloads [8, 12, 18], where the write percentage 
ranged from 1.1% to 82.3%. These workloads came from an instructional 
(INS) and research (RES) setting [18], a campus home directory (EECS) [8], 




























    











     















































    











     






















; LO G I N :  J u N e 20 0 9 seCu Re PROv e N A N Ce :  PROTeC TI N G Th e G e N e A LO G y O F b IT s 21

and CIFS corporate and engineering workloads (CIFS-corp, CIFS-eng) [12]. 
The RES and INS workloads are read-intensive, with the percentage of write 
transactions less than 10%. The CIFS workloads have twice as many reads 
as writes. The EECS workload has the highest write load, with more than 
80% write transactions. 

As shown in Figures 5(a) and 5(b), the read-intensive workloads have almost 
no provenance overhead, with less than 5% overhead for both RES and INS 
on ordinary disk and less than 2% with a RAM disk. Write-intensive work-
loads on ordinary disk incur higher overheads, but still less than 14% for 
CIFS and less than 36% for EECS. With a RAM disk, the overheads are less 
than 3% for CIFS and around 6.5% for EECS. 

related Work

Numerous research efforts have tackled the issues of collecting, storing, rep-
resenting, annotating, and querying provenance data, but little has been 
done to secure that information [4, 10]. Researchers have categorized prov-
enance systems for science [20] and explored the question of how to capture 
provenance information, typically relying on workflow instrumentation [2, 
15]. Provenance management systems used by scientists include Chimera for 
physics and astronomy, myGrid for biology, CMCS for chemistry, and ESSW 
for earth science [20]. Other efforts propose to collect provenance informa-
tion within databases [5, 22] social networks [9], and operating and file sys-
tems [16]; the latter offers the notable advantage of being hard to circumvent. 

Researchers have proposed the use of entanglement to preserve distributed 
systems’ history in a non-repudiable, tamper-evident manner [14]. Prove-
nance-related information is supported by source code management systems 
such as SVN [6], GIT [13], CVS [3], and Monotone [1]; versioning file sys-
tems [17]; and secure audit forensic logs [19, 21], to provide integrity assur-
ances for subsets of system and data state in a logically centralized authority 
model. Our work targets provenance information that is highly mobile and 
may traverse multiple untrusted domains, with no logically centralized re-
pository or authority. Work on audit logs typically secures logs as a whole, 
but does not allow authentication of individual modifications. Because prov-
enance information is associated with a digital object such as a file, this in-
troduces attacks that are not applicable to secure audit logs. Finally, secure 
audit log schemes typically assume that at most a handful of parties will 
process the data and compute checksums, whereas multiple principals’ ac-
cess is required throughout the lifetime of a provenance chain. 

conclusion

Data provenance is growing in importance as more information is shared 
across organizational boundaries. In this article we introduced a cross-plat-
form, low-overhead architecture for securing provenance information. We 
implemented our approach for tracking the provenance of data writes, in the 
form of a library that can be linked with any application. Experimental re-
sults show that our approach imposes overheads of only 1–13% on typical 
real-life workloads. Further details are available in our FAST ’09 paper [11], 
and on our Web site (http://tinyurl.com/secprov). 



22 ; LO G I N :  vO L .  3 4,  N O.  3

AcknOWLedGMenTS

We thank Bill Bolosky and John Douceur for tips about file system distribu-
tion. Hasan and Winslett were supported by NSF awards CNS-0716532 and 
CNS-0803280. Sion was supported by Xerox, IBM, and the NSF through 
awards CNS-0627554, CNS-0716608, CNS-0708025, and IIS-0803197. 

referenceS

[1] Monotone Distributed Version Control: http://www.monotone.ca/,  
accessed on December 22, 2008. 

[2] R. Aldeco-Perez and L. Moreau, “Provenance-Based Auditing of Private 
Data Use,” Proceedings of the BCS International Academic Research Conference, 
Visions of Computer Science, 2008. 

[3] B. Berliner, “CVS II: Parallelizing Software Development,” Proceedings of 
the Winter 1990 USENIX Conference, USENIX Association, 1990, pp. 341–
352. 

[4] U. Braun, A. Shinnar, and M. Seltzer, “Securing Provenance,” Proceedings 
of the 3rd USENIX Workshop on Hot Topics in Security (HotSec ’08), USENIX 
Association, 2008. 

[5] P. Buneman, A. Chapman, and J. Cheney, “Provenance Management in 
Curated Databases,” Proceedings of the ACM International Conference on Man-
agement of Data (SIGMOD), ACM Press, 2006, pp. 539–550. 

[6] B. Collins-Sussman, “The Subversion Project: Building a Better CVS,” 
Linux Journal 2002(94): 3. 

[7] J.R. Douceur and W.J. Bolosky, “A Large-Scale Study of File-System Con-
tents,” Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), ACM Press, 1999, pp. 59–70. 

[8] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, “Passive NFS Tracing of 
Email and Research Workloads,” Proceedings of the 2nd USENIX Conference 
on File and Storage Technologies (FAST ’03), USENIX Association, 2003, pp. 
203–216. 

[9] J. Golbeck, “Combining Provenance with Trust in Social Networks for 
Semantic Web Content Filtering,” International Provenance and Annotation 
Workshop, in volume 4145 of Lecture Notes in Computer Science, L. Moreau 
and I.T. Foster, eds., Springer, 2006, pp. 101–108. 

[10] R. Hasan, R. Sion, and M. Winslett, “Introducing Secure Provenance: 
Problems and Challenges,” Proceedings of the ACM Workshop on Storage Secu-
rity and Survivability (StorageSS), ACM Press, 2007, pp. 13–18. 

[11] R. Hasan, R. Sion, and M. Winslett, “The Case of the Fake Picasso: 
Preventing History Forgery with Secure Provenance,” Proceedings of the 7th 
USENIX Conference on File and Storage Technologies (FAST ’09), USENIX Asso-
ciation, 2009. 

[12] A.W. Leung, S. Pasupathy, G. Goodson, and E.L. Miller, “Measurement 
and Analysis of Large-Scale Network File System Workloads,” Proceedings of 
the 2008 USENIX Annual Technical Conference, USENIX Association, 2008, 
pp. 213–226.

[13] J. Loeliger, “Collaborating Using GIT,” Linux Magazine, June 2006. 

[14] P. Maniatis and M. Baker, “Secure History Preservation through Time-
line Entanglement,” Proceedings of the 11th USENIX Security Symposium, 
USENIX Association, 2002, pp. 297–312.



; LO G I N :  J u N e 20 0 9 seCu Re PROv e N A N Ce :  PROTeC TI N G Th e G e N e A LO G y O F b IT s 23

[15] L. Moreau, P. Groth, S. Miles, J. Vazquez-Salceda, J. Ibbotson, S. Jiang, 
S. Munroe, O. Rana, A. Schreiber, V. Tan, and L. Varga, “The Provenance of 
Electronic Data,” Communications of the ACM, 51(4): 52–58 (2008). 

[16] K.-K. Muniswamy-Reddy, D.A. Holland, U. Braun, and M.I. Seltzer. 
“Provenance-Aware Storage Systems,” Proceedings of the 2006 USENIX Annual 
Technical Conference, USENIX Association, 2006, pp. 43–56. 

[17] Z.N.J. Peterson, R. Burns, G. Ateniese, and S. Bono, “Design and Imple-
mentation of Verifiable Audit Trails for a Versioning File System,” Proceed-
ings of the 5th USENIX conference on File and Storage Technologies (FAST ’07), 
USENIX Association, 2007, pp. 93–106.

[18] D. Roselli, J.R. Lorch, and T.E. Anderson, “A Comparison of File Sys-
tem Workloads,” Proceedings of the 2000 USENIX Annual Technical Conference, 
USENIX Association, 2000. 

[19] B. Schneier and J. Kelsey, “Secure Audit Logs to Support Computer Fo-
rensics,” ACM Transactions on Information and System Security, 2(2): 159–176 
(1999). 

[20] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data Provenance 
in E-Science,” ACM SIGMOD Record, 34(3): 31–36 (Sept. 2005). 

[21] R. Snodgrass, S. Yao, and C. Collberg, “Tamper Detection in Audit 
Logs,” Proceedings of the 30th International Conference on Very Large Data Bases 
(VLDB), VLDB Endowment, 2004, pp. 504–515. 

[22] J. Widom, “Trio: A System for Integrated Management of Data, Accu-
racy, and Lineage,” Proceedings of the 2nd Biennial Conference on Innovative 
Data Systems Research (CIDR), January 2005.




