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river, environmentalists are concerned. If one puts heat into 
the air instead, no one seems to care.

Another potential savings strategy is to reevaluate how 
datacenters are cooled. We may not want to cool the whole 
datacenter to 62 degrees. We may want to cool everything 
to 89 degrees. But then there’s no margin for error. In rais-
ing the total machine room temperature, we would be oper-
ating “nearer to the edge of the hardware function envelope” 
and any failure of cooling might lead to massive failures of 
hardware.

The recent rise of cloud computing poses its own power 
challenges. If everybody outsources storage to Amazon and 
everyone gets a surge of traffic (e.g., the day after Thanks-
giving), do our computer systems have a credit meltdown? 
What if the whole “ecosystem” undergoes the same set of 
unforeseen changes?
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Summarized by Mike Foss (mikefoss@rice.edu)

n	 Towards Virtual Passthrough I/O on Commodity Devices
Lei Xia, Jack Lange, and Peter Dinda, Northwestern University

Lei Xia delivered the first presentation of the workshop, 
explaining how one might use a model-based approach to 
allow virtual passthrough I/O on commodity devices. The 
current approaches to allow high-performance I/O in guest 
operating systems are limited. In one approach, the virtual 
machine provides full emulation of the device in order to 
multiplex it to each guest operating system; however, this 
requires significant overhead in the VM. To reduce the per-
formance penalty, a guest might bypass the virtual machine 
altogether in direct-assignment I/O. However, this approach 
is less secure, since a guest could affect the memory of other 
guests or the VM itself. Some devices are multiplexed in the 
hardware and allow each guest to directly access the device 
while preserving security, but this feature is not available 
on commodity I/O devices, nor do these devices currently 
allow migration of guests.

Xia introduced virtual passthrough I/O (VPIO), which al-
lows a guest to have direct access to the hardware for most 
operations and also allows a guest to migrate. VPIO as-
sumes that there is a simple model of the device that can 
determine (1) whether a device is reusable, (2) whether a 
DMA is about to be initiated, and (3) what device requests 
are needed to update the model. VPIO also assumes that 
the device can be context-switched, that is, that the device 
can deterministically save or restore the state pertaining to 
a guest operating system. For the best performance, the goal 
of VPIO is to have most guest/device interactions complete 
without an exit into the VM.

Under VPIO, each access to the device must go through a 
Device Modeling Monitor (DMM). The purpose of DMM is 
twofold: (1) It saves enough state about the guest and the 
device that a guest could migrate to a new VM, and (2) 
it ensures that the VMM enforces proper security. It also 
keeps track of a hooked I/O list, which is a set of I/O ports 
that require VM intervention if accessed by a guest. Un-
hooked I/O ports may be used by the guest directly. The 
device is multiplexed by performing a context switch on the 
device (restoring the guest-specific state into the device). 
Currently, if the DMM disallows the guest to continue with 
an operation (e.g., in the case of a DMA to an address out 
of bounds), the DMM delivers a machine-check exception 
to the guest. If the device issues an interrupt, it may not 
be clear to which guest to forward the interrupt, as in the 
case of receiving a packet on a NIC. Currently, Xia’s team is 
working on finding a general solution to this problem.

Xia’s team did implement a model of an NE2000 network 
card and had it running under QEMU. The model was 
under 1000 lines of code, and only a small fraction of  
I/Os (about 1 in 30) needed VM intervention. The remain-
ing challenges for this project include the following: moving 
more of the model into the guest in order to reduce the 
cost of a vm_exit; handling incoming device input, such as 
interrupts without a clear destination guest; and obtaining a 
device model from hardware manufacturers.

n	 Live Migration of Direct-Access Devices
Asim Kadav and Michael M. Swift, University of Wisconsin—
Madison

Asim Kadav presented the second paper of WIOV, explain-
ing how to migrate direct-access I/O devices from one vir-
tual machine to another. While direct, or passthrough, I/O 
offers near-native performance for a guest OS, it inhibits mi-
gration, because the VM does not know the complete state 
of the device. Furthermore, the device on the destination 
machine may be different from that on the source machine. 
Asim proposed to use a shadow driver in the guest OS in 
order to facilitate migrating guests that take advantage of 
passthrough I/O.

The challenge of the shadow driver is to simultaneously 
offer both low constant overhead and short downtime dur-
ing migration. The shadow driver listens to communication 
between the kernel and the device driver via taps. In its 
passive mode, the shadow driver keeps track of the state 
of the driver. It intercepts calls by the driver, tracks shared 
objects, and logs any state-changing operations.

During migration, or active mode, the shadow driver is 
responsible for making sure that migration occurs without 
the need to modify the existing device driver or hardware. 
First, the shadow driver unloads the old device driver and 
monitors any kernel requests during the period where there 
is no driver. Next, it finds and loads the new driver into the 
appropriate state.
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Asim’s team modified Xen and Linux in order to implement 
a prototype shadow driver. The shadow driver implements 
taps by substituting functions in the kernel/driver interface 
with wrapper functions. These wrappers were generated 
by a script that would accommodate any network device. 
Asim showed that the shadow driver method worked and 
only cost a percentage point of both extra CPU overhead 
and network throughput during passive mode. Migration 
to a new virtual machine took four seconds, but most of 
the time was spent in the initialization code of the network 
driver. Asim also showed that migration between heteroge-
neous NICs was possible by enabling the lowest common 
denominator of features between the participating NICs. 
No device driver or hardware modifications were needed in 
order to use the shadow driver.

n	 Scalable I/O—A Well-Architected Way to Do Scalable, 
Secure and Virtualized I/O
Julian Satran, Leah Shalev, Muli Ben-Yehuda, and Zorik 
 Machulsky, IBM Haifa Research Lab

Muli Ben-Yehuda presented the final paper of the first ses-
sion of WIOV, a position paper on how I/O should be scaled 
for any system. The current device driver model presents a 
unique problem in the OS for several reasons. First, com-
munication with the hardware consists of only register 
transfer and DMA operations. Furthermore, each driver 
is vendor-specific and must be maintained by the vendor. 
They are often the source of bugs in the OS. These problems 
are pronounced in virtualized systems. Muli proposed to 
virtualize the entire I/O subsystem rather than each driver 
or device, in order to enhance the scalability and security of 
I/O in virtual machines.

The scalable I/O architecture consists of device controllers, 
I/O consumers, and host gateways. A device controller (DC) 
is responsible for communicating directly with the device. It 
implements I/O services and can serve many I/O consumers 
simultaneously. It also protects devices from unauthorized 
access. An I/O consumer is any process on the host that 
wishes to access the device. The I/O consumer accesses 
the proper DC by first sending the request through a host 
gateway. The host gateway (HG) is in charge of granting 
protected I/O mechanisms to all the I/O consumers on the 
host. It can be thought of as an elaborate DMA engine that 
provides a DMA to virtual memory. The HG and DC are 
connected by shared memory or any I/O interconnect in 
general, which is completely abstracted away from the I/O 
consumer.

Protected DMA (PDMA) is the mechanism by which the HG 
and DC communicate. The HG generates a memory creden-
tial whenever an I/O consumer wishes to use the DC. This 
credential is later validated by the HG whenever the DC 
accesses the consumer’s memory.

The scalable I/O protocol grants several benefits over cur-
rent I/O mechanisms. I/O consumers may submit I/O pro-

grams to the DC, which gives a high-level I/O interface to 
consumers. Furthermore, the I/O subsystem is now isolated 
from the rest of the operating system, which may improve 
performance and robustness. A programmable I/O interface 
also allows for enhanced flexibility and scalability.

Another benefit of scalable I/O is that memory pinning be-
comes unnecessary. Memory pinning is expensive and puts 
an error-prone burden on the programmer. In scalable I/O, 
devices ignore pinning and assume that the memory is al-
ways present. In the unlikely case that the desired memory 
is not present, the device takes an I/O page fault, and the 
DC and HG communicate in order to resolve the page fault.

stor age virtualization

Summarized by Asim Kadav (kadav@cs.wisc.edu)

n	 Block Mason
Dutch T. Meyer and Brendan Cully, University of British Colum-
bia; Jake Wires, Citrix, Inc.; Norman C. Hutchinson, University 
of British Columbia; Andrew Warfield, University of British 
Columbia and Citrix, Inc.

Block Mason by Dutch Meyer addresses the problem of 
developing agile storage systems for virtualization by 
proposing a high-level declarative language to manage 
blocks. Dutch began by describing the file system interface 
as basically a block interface but with accessibility issues 
in practice, as the kernel hides it. However, in virtualized 
interfaces the block layer becomes more important since 
shared storage can leverage significant functionality from 
the block layer. At block level one can add many features 
such as compression, encryption, deduplication, or even 
advanced gray box techniques. The key idea of this talk 
is to provide a user-level framework for building reusable 
modules at the block level that one can connect to perform 
more complex tasks. Block Mason helps developers build 
fine-grained modules and assemble and reconfigure them to 
build high-level declarative verifiable block manipulation. 
The implementation of Block Mason was done in Xen using 
the blktap interface. In user mode, a new scheduler, parser, 
and driver API were implemented. There were also some 
minimal updates to blkback.

Dutch further detailed the implementation, discussing the 
basic building blocks (elements/modules) and connectors 
(ports/edges). An element example would be as simple as re-
cording I/O requests. Any details of elements can be added 
to configuration files. The connectors are the ports, identi-
fied by names. Block Mason also supports live reconfigura-
tion of the modules built by draining outstanding requests 
and initializes new ones as they arrive. The architectural 
support implemented includes message passing and depen-
dency tracking.

As an example of a service using these various constituents, 
Dutch suggested migrating storage from a local disk to an-
other storage device. The two subservices that are using the 
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Block Mason interface in this example are I/O handling and 
background copying, implemented using low-level Block 
Mason constituents. More complex modules such as cloud-
backed disks were also described briefly. Block Mason can 
be also used to perform other tasks such as correctiveness 
verification. Block Mason will be integrated into the new 
blktap2 interface in Xen. Future work will include develop-
ing declarative languages to perform block tasks.

Dan Magenheimer from Oracle commented on how power-
ful Block Mason is and inquired about the things that can 
be done with Block Mason. Dutch answered that, using 
Block Mason, one can build simple features and aggrega-
tion of simple features such as disk encryption. Himanshu 
from Microsoft asked about synchronization issues with 
Block Mason. Dutch explained synch issues with the copy 
example. In response to a question about whether synchro-
nous write would work properly,  Dutch explained that only 
one port is used to perform I/O in his example. Another 
questioner asked about block failures and their handling by 
Block Mason. Dutch replied that one can trap failures and 
perform recovery actions and explained it in his disk copy 
example. Muli Ben-Yehuda posited that this may be similar 
to using pipes, but Dutch said that pipes would give the 
same expressiveness but coarse-grained modules.

n	 Experiences with Content Addressable Storage and Virtual 
Disks
Anthony Liguori, IBM Linux Technology Center; Eric Van 
 Hensbergen, IBM Research

Eric Van Hensbergen gave a talk on his research on how to 
reduce redundancy in virtual disk images using content ad-
dressable storage. The motivation here is that virtualization 
causes lot of image duplication with many common files, 
libraries, etc. In a cloud scenario, the problem is even more 
severe, with many thousands of disk images on the server. 
The first part of his talk consisted of analyzing the existing 
duplication at file and block levels. The results had filtered 
out duplicates due to hard links and sorted the results to 
obtain self- and cross-similarity separately. Eric showed 
considerable overlap in terms of the same blocks in various 
Linux distributions for their 32/64-bit versions. There are 
also similar overlaps in different distributions of the same 
operating system (Linux) and in different versions of the 
same distribution. All results show considerable overlap in 
the binaries that can be exploited. Even in analyzing dif-
ferent images created from different install options, there 
is a large degree of overlap (duplication). These results are 
also the same for Windows (factoring out swap/hibernation 
files). Analyzing the deduplication efficiency, the results 
show a slightly higher efficiency for 8k blocks, but this is 
primarily due to error associated with partial blocks and 
the discounting of zero-filled blocks. A disk-based scan was 
able to identify approximately 93% of the duplicate data.

The second part of the talk compared existing solutions 
and their solution. The common existing solution is to use 

Copy-On-Write (COW) disks. The problem with the COW 
approach is that there is a drift to higher disk usage with 
application of the same updates to different disks. This is 
because, as the same updates are applied to similar images, 
since updates are applied one after another the images get 
out of sync. Eric’s solution is to use a an existing Content 
Addressable Storage (CAS) system (Venti) as a live backing 
store and use a filesystem interface on top of it to present 
to virtual disks. The hypervisor was modified to use these 
virtual disks. Further, Eric gave some background on CAS 
and then described some related work including Foundation 
(CAS to archive VM for backup), Mirage (file-based CAS), 
and Internet Suspend Resume (CAS to access personal 
computing environments across a network by using virtual-
ization and shared storage). He also cited a work from Data 
Domain in which a filesystem-based approach is used to 
leverage dedupulication in backups.

In terms of implementation, Eric reused an existing block-
based CAS, vbackup in Plan 9. QEMU/KVM ran the vir-
tual machines and provided a hook via vdiskfs that uses 
vbackup as the underlying store.

The evaluation consisted of measuring block utilization 
before and after same updates on two similar disk images. 
There was also an additional micro-benchmark using the 
dd command. The results show better results with CAS and 
compressed CAS than those with COW. The performance, 
however, takes a hit and the boot time to bring up the 
system using CAS is much higher. In terms of the micro-
benchmark, CAS performs much worse, running at 11 
Mbps compared to 160 Mbps (without CAS) in raw mode. 
To summarize the evaluation, the space efficiency is great 
but performance is bad, since Venti is single-threaded and 
synchronous and also was configured with a small cache for 
these experiments. Their future work includes reworking 
CAS for live performance, experimenting with flash disks 
for index storage, and building in support for replication 
and redundancy. 

A questioner asked about the case of dirty blocks and Eric 
replied that he was using a write buffer to avoid using them 
for CAS; however, dirty blocks can be used as a single large 
cache for all virtual machines. Another person from the au-
dience pointed out a related work from CMU about finding 
similarities using encryption system. When asked whether 
this was even the right approach to the problem, Eric said 
he didn’t know, but it was easy to implement and took only 
two weeks. Jake Oshins from Microsoft wondered whether 
it would be advantageous for the file system to know what 
blocks are being deleted. Eric said it would definitely help 
and pointed out a related work that addresses this.

n	 Paravirtualized Paging
Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt 
Hackel, Oracle Corporation

Dan’s talk covered a new type of cache, called hcache, 
aimed at resolving memory issues in virtualization. Mem-
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ory is cheap but, currently, memory systems are running 
unutilized and are being wasted. Most recent work on 
virtualization has concentrated on efficient CPU and I/O 
utilization, but little work has been directed toward memory 
utilization. Described in the talk was a proposed approach 
to resolving memory issues in virtualization by allocating a 
separate pool in the virtual machine’s memory space, called 
transcendental memory. Dan then focused on the basics of 
physical memory concepts in a single machine and virtual-
ization servers and discussed the common memory issues 
there. In a single machine with a single operating system, 
the memory is basically a huge page cache that is never 
optimized, and a lot of idle memory in page cache is simply 
wasted. This is because the operating system has no way of 
determining which areas of page cache are being utilized 
and which are not. The pages are moved out of page cache 
using a page cache replacement algorithm (PRFA); even 
PRFA cannot determine the correct working set of page 
cache, resulting in many false-negative page evictions, mak-
ing the matter worse.

The situation is no different in virtualization servers, where 
the physical memory is still used inefficiently. Memory al-
locations to guest virtual machines are either by static par-
titioning of memory or by dynamic partitioning of memory. 
Neither of them is helpful. Static partitioning has problems 
such as fragmentation of memory and memory holes result-
ing from machine migration. There is also almost no load 
balancing of memory by the hypervisor in static partition-
ing. The second method, dynamic partitioning (also known 
as ballooning), uses a balloon driver in the guest virtual 
machines. Ballooning tunnels pages across balloon drivers 
to transfer memory from one virtual machine to another 
to perform load balancing. This scheme also has many 
issues, since OS/virtual machines rarely voluntarily give 
up memory and always demand more memory. There are 
further difficulties in determining which virtual machine is 
the neediest here. Also, ballooning is not instantaneous for 
large or fast changes in balloon size.

The solution here aims to answer unanswered questions 
such as how to reclaim I/O without increasing disk I/O. 
Also, the problems of ballooning and memory just men-
tioned can be alleviated by using the solution described. 
The solution provided is to reclaim all idle memory into 
a pool called the transcendental memory pool. All guests 
access memory via the hypervisor using transcendental 
APIs, which cause memory operations that are synchro-
nous, page-oriented, and copy based. This memory pool is 
subdivided into four subpools: private ephemeral, private 
persistent, shared ephemeral, and shared persistent. The 
private ephemeral memory is labeled as “hcache.” The false 
evictions now fall into hcache and have a low cost now. 
Also, any memory in hcache can be thrown away quickly, 
resulting in faster memory allocations to virtual machines 
so that operations such as ballooning can be done quickly. 
Dan also pointed out that very minimal changes are needed 

to implement this solution. He further described hswap, 
which is a persistent, private cache that works like a pseudo 
swap device. It helps to balloon fast, as ops from pool are 
faster and there is no thrashing as memory is allocated from 
the pool. He further pointed out that shared ephemeral/
persistent pools can act as shared memory for inter-VM 
communication; this is a part of future work.

Transcendental memory can also be used in a single OS, be-
cause API is clean, as a useful abstraction (NUMA memory, 
hot-swappable memory, or SSDs). It can also be used as a 
cache for network file systems. In conclusion, transcenden-
tal memory is a new way to manage memory for single op-
erating system and virtualization servers and reduces many 
of the existing memory issues. 

To the question of whether one needs contiguous memory 
for transcendental memory, Dan replied that the tran-
scendental memory solution works even with fragmented 
memory.

device virtualization

Summarized by Jeff Shafer (shafer@rice.edu)

n	 GPU Virtualization on VMware’s Hosted I/O Architecture
Micah Dowty and Jeremy Sugerman, VMware, Inc.

Micah Dowty presented a paper on how to virtualize a GPU. 
In this talk he introduced a taxonomy of GPU virtualization 
strategies and discussed specifics of VMware’s virtual GPU.

A GPU can provide significant computation resources, and 
both desktop and server virtualized environments seek to 
take advantage of these resources. Virtualizing a GPU poses 
many different challenges, however. There are multiple 
competing APIs available, and these APIs are complicated 
with hundreds of different entry points. In addition, the 
APIs and GPUs are programmable. Every GPU driver is also 
a compiler, and each API includes a language specification. 
Hardware GPUs are all different, covering a wide range 
of architectures that are often closely guarded secrets that 
change frequently between product revisions. Finally, the 
hardware state of the GPU chip and associated memory is 
large, covering gigabytes of data in a highly device-specific 
format including in-progress DMAs and computation.

There are several potential options to virtualize a GPU, as 
presented in the taxonomy. These strategies include captur-
ing application API calls at a high level and proxying them 
to another domain for execution (API remoting), providing 
a virtual GPU for each guest with which the native software 
stack communicates (device emulation), and various pass-
through architectures to tunnel GPU commands down to 
the actual hardware. Each technique has various tradeoffs in 
terms of performance and isolation.

The VMware virtual GPU uses a combination of techniques, 
most notably device emulation and API remoting, to provide 
accelerated GPU support in a virtualized environment on 
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top of any physical GPU. With this architecture, interactive 
graphics applications can now be run at a usable perfor-
mance level, whereas it was not possible to run them in a 
virtualized environment before. Future work will focus on 
new pass-through techniques as well as the development of 
virtualization-aware GPU benchmarks that stress, not the 
raw GPU hardware performance, but, rather, the API-level 
paths that are at issue in a virtualized system.

One audience member asked about the challenges involved 
in migrating virtual machines across different GPUs. Dowty 
replied that migration requires reading all the state from the 
GPU and memory, but this is not always possible consider-
ing that some state is generated by the graphics card itself 
and is not always accessible to the driver or API. GPU ven-
dors have a lot of flexibility in implementing new technolo-
gies (such as SR-IOV) to make virtualization and migration 
simpler and more complete.

n	 Taming Heterogeneous NIC Capabilities for I/O 
 Virtualization
Jose Renato Santos, Yoshio Turner, and Jayaram Mudigonda, 
Hewlett-Packard Laboratories

Jose Renato Santos from HP Labs presented a paper on a 
network I/O virtualization (IOV) management system that 
can translate high-level goals into low-level configuration 
options. In addition, methods for efficient guest-to-guest 
packet switching were discussed.

In recent years, different vendors have provided many 
mechanisms for I/O virtualization, such as software vir-
tualization, multi-queue NICs, and SR-IOV multifunction 
NICs. In the process, however, they have created significant 
challenges for managing networks of heterogeneous devices, 
each with different hardware and software approaches to 
virtualization. Configuration becomes more complex and 
fragile with increasing diversity in IOV mechanisms. What 
is needed is a higher-level abstraction for I/O configura-
tion, where users specify logical networks and a mapping of 
virtual interfaces to logical networks, and then the system 
selects and configures the appropriate mechanism.

This configuration can be done statically or dynamically. 
Although a static system may be simpler, consider a case 
where there are more guests than hardware NIC contexts 
available to support them. Then a dynamic management 
system that looks at current workload levels may be needed 
for optimal assignment. In addition to a new configuration 
mechanism, a spectrum of methods for efficient intranode 
guest-to-guest packet switching were also discussed, includ-
ing switching in software, on the NIC, or in external net-
work devices. All these techniques have tradeoffs in terms 
of CPU, I/O bandwidth, link bandwidth, and memory use, 
and this must be considered by the high-level management 
tool depending on constraints input by the user.

One audience member asked how frequently the system can 
change its configuration based on these high-level policy 
guidelines. Jose answered that this is an open question, but 

certainly not on every packet. There are several concerns in-
volving maintaining packet ordering and minimizing setup/
teardown overheads.

n	 Standardized but Flexible I/O for Self-Virtualizing Devices
Joshua LeVasseur, Ramu Panayappan, Espen Skoglund, Christo 
du Toit, Leon Lynch, and Alex Ward, Netronome Systems; 
Dulloor Rao, Georgia Institute of Technology; Rolf Neugebauer 
and Derek McAuley, Netronome Systems

Rolf Neugebauer spoke about some of the limitations of the 
SR-IOV standard for virtualizing complex network devices 
and proposed a new approach, software configurable virtual 
functions, to provide increased flexibility for virtualization.

In today’s networking environment, multi-queue NICs are 
an emerging standard, and some include hardware support 
for virtualization. Hypervisors allow assignment of PCI 
device functions to virtual machines by virtualizing the PCI 
configuration space. Moreover, modern chipsets include I/O 
MMUs to provide DMA isolation and address translation. 
The SR-IOV (Single Root I/O Virtualization) standard ties 
these three trends together and allows endpoints such as 
network cards to be enumerated as PCI virtual functions. 
Because this is performed in hardware through the device 
configuration space, however, the SR-IOV has limits to its 
flexibility.

The new Software Configurable Virtual Functions (SCVF) 
is proposed for highly programmable network devices such 
as the Netronome NFP3200. SCVF is built on the same 
base PCI Express technologies and provides isolated access 
to virtual functions using IOMMUs. Rather than using the 
hardware-based configuration space and device support to 
provide virtualization, however, it performs device enu-
meration by host OS software. In SCVF, the PCI configu-
ration space is not used to enumerate virtual functions. 
Rather, SCVF simply presents a PCI device to the host OS. 
The OS loads a card driver for the physical device function. 
This driver acts as a privileged control driver and imple-
ments a virtual PCI bus on which SCVFs are enumerated 
as full PCI devices. The operating system recognizes the 
virtual PCI bus, and then everything “just works.” When 
implemented in Linux, the kernel loads the physical func-
tion control driver just as for other devices, and no changes 
were required to Linux or Xen. The existing software stack 
is used for hot-plugging, device discovery, and PCI device 
assignment.

An audience member asked how, after an interrupt is 
generated, it is routed and virtualized. Rolf answered that 
the host sets up a list of MSI interrupts via the card driver, 
which emulates MSI, and then relies on the hypervisor to 
route those interrupts to CPU cores normally. Thus there 
are two levels of PCI virtualization: their driver, and then 
the Xen back-end/front-end interrupt virtualization.
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n	 SR-IOV Networking in Xen: Architecture, Design and 
Implementation
Yaozu Dong, Zhao Yu, and Greg Rose, Intel Corporation

Greg Rose presented a paper on the SR-IOV specification 
and its application to network devices to provide direct I/O 
in a virtualized environment.

SR-IOV (Single Root I/O Virtualization and Sharing) is a 
PCI-SIG standard released in September 2007 for sharing 
device resources on virtualization-capable hypervisors or 
kernels. It specifies how a single physical function (PF) de-
vice should share and distribute its resources to many vir-
tual functions (VFs). It is not networking-specific but, when 
properly employed in a network device, should provide the 
full native I/O bandwidth to a virtualized guest operating 
system and improve scalability over emulation/paravirtual-
ization as more virtual machines are added.

Greg presented a network architecture that includes the 
SR-IOV NIC, Xen hypervisor, and individual guest do-
mains. Domain 0 runs the physical function device driver 
and accesses the physical functions of the NIC, while each 
guest domain runs a virtual function device driver and ac-
cesses a virtual function of the NIC. The physical function 

device driver is responsible for controlling all of the virtual 
function capabilities and providing configuration services. 
It maintains administrative control of all the Tx/RX queues, 
and thus it has ultimate responsibility for device security. 
The virtual function device driver, in contrast, is similar 
to a normal NIC driver. It serves as an I/O engine in the 
virtual machine to “pump packets” to the NIC and depends 
on the physical function driver for most configuration and 
notification of events.

The presentation concluded with a demo of a functional 
SR-IOV NIC running in the lab and a discussion of future 
work. Areas that need further effort include handling a 
physical function driver reset (such as one caused by a 
power state transition), because that reset also affects all 
the virtual function drivers that depend on it. In addi-
tion, network-specific management tools are needed to set 
parameters such as replication, loopback, MAC addresses, 
and more. One audience member asked where the packets 
go when two virtual machines on the same host are com-
municating. Greg replied that the packets are going down to 
a layer-2 switch fabric in the physical NIC and then going 
back up to the other guest. Domain0 never sees the intra-
VM packets.


